Development of a Low-Cost Programmable Microphone Preamp Gain Control IC for Pro Audio Applications

Gary Hebert, Chief Technology Officer THAT Corporation

THAT Corporation

Tonight's Presentation

- Introduction
- Professional Microphone Preamplifiers
- Digital Mic Preamp Gain Controllers
- Earlier Products
- Cost Reduction Measures
- Cost-Performance Tradeoffs
- Measured Performance
- Conclusions

Who's THAT?

- Founded in 1989
 2014 was our 25th anniversary!
- Spin-off from dbx Inc.
- Founders were dbx engineers

 Paul Travaline, Gary Hebert, And Les Tyler
- Once made complete pro-audio products
- Now focused on Pro Audio ICs and Licensing

Professional Microphone Preamps

- Balanced (Differential) Input
- Low input noise required
 - On the order of 150Ω thermal noise
 - (-130.8 dBu in 20 Hz 20 kHz BW)
- Wide gain range required
 - Mic sensitivities vary over at least 37 dB
 - Sound levels vary with application
- Max input level should be ≥ +16 dBu for the highest-output condenser microphones

Digital Control of Professional Microphone Preamps

- Many preamps are now front ends for A/D converters in digital audio products.
- Digital control of the gain gives a uniform user interface for these systems.
- It also allows enhanced automation features such as setup recall and automatic gain reduction in response to clipping.

Copyright © 2016, THAT Corporation

Typical Preamp Front End

- Differential gain = $1 + (2R_F/R_G)$
- C_c capacitors block dc inputs and phantom power
- R_G low valued at high gains to minimize noise

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

What's a Programmable Gain Controller?

 Digitally controlled feedback network for a low-noise differential amplifier

Programmable Gain Controller

- R_G gets small at high gains
- Small R_G implies low R_{ON} switches
- R_F/R_G is large at high gains

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

THAT's First Controllers

- 5171 1 dB/step – 13.6 dB – 68.6 dB – <.0008% THD, +24 dBu out, any gain
 5173 - 3 dB/step – 0 dB – 60 dB – <.001% THD,+24 dBu out, any gain
- Accurate gains +/-.5 dB max, +/-.15 dB typical
- DC servos

 Both R_F and R_G are varied using a combination of a tapped resistor string and a set of switched paralleling resistors.

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

- Tapped resistor string is used for large steps
- Tapped string switches don't effect gain or THD, but do add noise

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

- Minimum RG (in red) is 5.6Ω in the 5171.
- This resistor is very wide and short.
- W/L≈109 for 610
 Ω/sq. poly

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

- Paralleling resistors are used for small steps
- Paralleling switches are in series with highvalue resistors

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

- Maximum parallel R_F (in red) is 47 kΩ in the 5171.
- This resistor is narrow and long.
- W/L≈.013 for 610
 Ω/sq. poly

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Show Me the Money

- The 5171 and 5173 have proven to be too expensive for many applications, particularly those at the entry level where some of the possible automation features might be most useful.
- So, what makes them expensive, and what do we trade off to make a less costly part?

Copyright © 2016, THAT Corporation

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC

Resistors – Bigger is Better

- Ratio accuracy increases with resistor area.
- Distortion due to self heating is proportional to: $S_G * I_{RMS}^2 / W^{1.4}$

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Switches – Bigger is Better

- R_{ON} is inversely proportional to device width
- Low R_{ON} minimizes noise from the tap-string switches
- High voltage capability also increases area

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Cost Reduction – the Easy Stuff

- 3 dB per step
- Dual channel part
 - Saves some package cost
 - Small savings in SPI interface area
- Eliminate servo
 - Reduces die area
 - Reduces power
 - Requires large external capacitor

New Topology

- Variable R_G
- Fixed R_F
- Switch R_{ON} added to R_G
- ΔR_{ON} adds THD
- R_{ON} variation adds gain error

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

New Topology

- Dynamic gate drive minimizes THD due to ∆R_{ON}
- Reduced max gain (51 dB) saves die area

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

How Much Gain?

Dynamic Range vs. Gain – 150Ω Source, Ideal Preamp

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

"Bent Binary" R_G Scheme

- Binary resistances for R_G leads to gain error at low gains
- Bending a few of the LSBs gives a good fit (+/-.2 dB nominal error)

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

"Bent Binary" R_G Scheme

- 0 51 dB gain range with 10 switches
- Actual gain accuracy will vary since R_{ON} doesn't track poly resistors

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Resistor Area Reduction

- Resistors scaled down to meet the target die area
- These become the dominant distortion mechanism
- THD due to resistor self heating is almost pure 3rd harmonic

Copyright © 2016, THAT Corporation

- EIN with THAT 1580 = -128.3 dBu with 150 Ω R_S, 20 Hz 20 kHz BW, 51 dB gain
- Gain Accuracy
 - +/-.5 dB 0 39 dB
 - +/-1 dB 42 51 dB

THD+N vs Gain at 24dBu Out, 1 kHz

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Typical vs. Theoretical Gain Error

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Additional Features

- Zero-crossing detectors (ZCDs) for each channel
- Internal time-out clock counter for ZCD
- 1 general purpose logic output (GPO) per channel
- GPOs can be sync'd to the ZCD
- Independent connections for R_F resistors for discrete preamp designs that require this

Conclusions

- We achieved a 55% cost reduction per channel compared to our 5173
- THD performance was compromised in a manner that seems acceptable to most
- Noise performance is actually slightly better than the previous designs at most gains

Copyright © 2016, THAT Corporation

Acknowledgements

Thanks to Fred Floru of THAT Corporation for his help in reviewing this presentation.

Thanks to Rene Jaeger for inviting me to speak tonight.

THAT Corporation

Development of a Low-Cost Programmable Mic Preamp Gain Controller IC Greater Northwest AES Section, June2016

Copyright © 2016, THAT Corporation

Questions?

Interfacing Digitally-Controlled Microphone Preamplifiers to A/D Converters 133RD AES Convention, Oct 2012

THAT Corporation

32

Copyright © 2012, THAT Corporation