Impedance & Audio Interfaces

PNW Chapter of the AES March 2017

Electrical Impedance Basics

Resistance (Resistor)

Ratio of current (I) and voltage (E or V)

Unit: Ω, Ohm

- Resistors
- Wires
- Circuit board traces

Electrical Impedance Basics

Capacitive Reactance (Capacitor)

Ratio of current (I) and the *change in voltage over time* (dV/dt)

Units: F, Farads

- Capacitors
- Two wires near each other
- PCB Traces near each other
- Any two conductive surfaces

"Resists" instantaneous changes in voltage

Electrical Impedance Basics

Inductive Reactance (Inductor)

Ratio of voltage (E or V) and the *change in current over time* (dl/dt)

Units: H, Henries

- Inductors
- Wires or coils of wire
- PCB Traces
- Transformers

"Resists" instantaneous changes in current

Audio Interfaces

What's the point of connecting two things together?

- Information transfer
- Information in what form?
 - Analog audio: frequency, phase and amplitude
 - Digital audio: frequency (data rate)
 - The higher the frequency, the more cable / wire impedance matters
- Across what distance?
 - The longer the distance, the more cable / wire impedance matters

Audio Interfaces

What to do with this information?

- Measure it (microphone level or line level audio)
 - Transfer a measureable voltage
 - Minimizes losses in the interface
- Do some work with it (telephone system or power amplifier)
 - Transfer usable power
 - Drive a loudspeaker
 - Heat a rack room
 - More losses in the interface
- Go the distance
 - Transmission line behaviors

Audio Interfaces: Voltage Transfer

Very common in pro and consumer audio systems

Voltage divider when reactance is minimized

Resistive Voltage Divider: R_L > 10 * R_O

$$V_{OUT} = V_{IN} * (R_{L} / (R_{O} + R_{L})) = V_{IN} * (10 / 11)$$

$$V_{OUT}$$
 = 90.9% of V_{IN}

Audio Interfaces: Cable Capacitance

Cable specs typically note the capacitance per unit length in picofarads (pF)

At higher frequencies the cable impedance increases, lowering signal level

RC Low pass filter $f_c = 1/(2\pi^*R_o^*C_w)$

$$R_o = 200 \text{ ohms}$$

 $C_w = 0.017 \text{ uF}$
 $f_c = 1/(2\pi * 200 * 0.017 * 10^{-6})$

f_c(-3 dB down) = 46.8 kHz

Audio Interfaces: Balanced Impedance

"In a balanced interconnect system both of the signal conductors have an equal, and nonzero, impedance to ground." ⁽²⁾

(Henry Ott consultants)

Audio Interfaces: Power Transfer

Electrical Power:

 $P = V * I \quad (or historically... P = E * I) \qquad V_{TOTA}$ Unit: Watts (Joules per second)
When is power necessary?
• Do some work
• Move air using a loudspeaker
• Turn a crank

(1) Bohn / Rane

Audio Interfaces: Power Transfer

Interface Power:

$$I_{TOTAL} = V_{TOTAL} / (Z_{TOTAL})$$
$$P = I_{TOTAL} * (V_{TOTAL})$$
$$P = V_{TOTAL}^{2} / Z_{TOTAL}$$

• For fixed max voltage, interface power is determined by input and output impedance

Power Transfer: Impedance Matching

Example:

Tube amplifier output transformers

•
$$Z_{OUT} \sim 2 \text{ k}\Omega, Z_{L} \sim 8 \Omega$$

 Transformer turns ratio matches low-z loudspeaker impedance to high-Z amplifier output impedance

Transmission Lines

- When cable lengths exceed one wavelength of the highest frequency, transmission line behaviors must be addressed
- Source and load termination is recommended when lines approach ¹/₄ wavelength

1/4 Wavelengths:

- 20 kHz 3.75 km
- 6.144 MHz 12.2 m

Wikipedia Commons

Transmission Lines: Wave Propagation

(6) Fun Science Demos

Transmission Lines: Impedance Matching

- Without proper termination, reflections with continue until dissipated
- Every out of phase reflection can cause destructive interference

Telephone Transmission Lines

 $Z_0 = 598.2$

University of California

AES/EBU Transmission Lines

 AES/EBU inputs and outputs are designed for a 110-ohm transmission line, so use 110-ohm cable!

Review

- Voltage Transfer (Impedance Bridging)
 - Analog audio interfaces
 - Zin should be ~10x Zout impedance
 - Keep reactance low, review cable capacitance for long cable runs
- Power Transfer (Impedance matching)
 - Matched Zin and Zout impedance maximizes power transfer
 - Typically necessary when the output is not low impedance
- Transmission Lines (Impedance Matching)
 - Matching Zin and Zout to the line impedance (Z0) minimizes reflections
 - Minimizing reflections maintains signal integrity

Questions

References

- Bohn, Dennis. "Practical Line-Driving Current Requirements." <u>http://www.rane.com/note126.html</u>. 1991 [Revised May 1996]. Web. 11 March 2017
- 2. Snow, William B. "Impedance -- Matched or Optimum?" *Journal of the AES*. Day Month Year. Web. March 11 2017
- 3. Ott, Henry. "Balanced vs. Unbalanced Audio Interconnections." *hottconsultants.com*. 2 July 2008. Web. 18 March 2017.
- 4. Whitlock, Bill and Rod Elliot. "Design of High-Performance Balanced Audio Interfaces" <u>http://sound.whsites.net/articles/balanced-2.htm#s2</u>. 2010. Web. March 12 2017.
- 5. Texas Instruments. "DIX4192 Integrated Digital Audio Interface Receiver and Transmitter." DIX4192 datasheet. February 2006 [Revised September 2010].
- 6. FunScienceDemos. "Sound Light Travel in Waves" Youtube. Fun Science Demos. 14 March 2015.