Impedance \& Audio Interfaces

PNW Chapter of the AES March 2017

Electrical Impedance Basics

Resistance (Resistor)
Ratio of current (I) and voltage (E or V)
Unit: Ω, Ohm

- Resistors
- Wires
- Circuit board traces

Electrical Impedance Basics

Capacitive Reactance (Capacitor)

Ratio of current (I) and the change in voltage over time (dV/dt)
Units: F, Farads

- Capacitors
- Two wires near each other
- PCB Traces near each other
- Any two conductive surfaces
"Resists" instantaneous changes in voltage

Electrical Impedance Basics

Inductive Reactance (Inductor)

Ratio of voltage (E or V) and the change in current over time (dl/dt)
Units: H, Henries

- Inductors
- Wires or coils of wire
- PCB Traces

- Transformers
"Resists" instantaneous changes in current

Audio Interfaces

What's the point of connecting two things together?

- Information transfer
- Information in what form?
- Analog audio: frequency, phase and amplitude
- Digital audio: frequency (data rate)
- The higher the frequency, the more cable / wire impedance matters
- Across what distance?
- The longer the distance, the more cable / wire impedance matters

Audio Interfaces

What to do with this information?

- Measure it (microphone level or line level audio)
- Transfer a measureable voltage
- Minimizes losses in the interface
- Do some work with it (telephone system or power amplifier)
- Transfer usable power
- Drive a loudspeaker
- Heat a rack room
- More losses in the interface
- Go the distance
- Transmission line behaviors

Audio Interfaces: Voltage Transfer

Very common in pro and consumer audio systems

Voltage divider when reactance is minimized

For 500 ft Belden 8451,
$\mathrm{C}_{\mathrm{W}}=(34 \mathrm{pF} / \mathrm{ft})(500 \mathrm{ft})=.017 \mu \mathrm{~F}$
(1) Bohn / Rane

Resistive Voltage Divider:
$R_{L}>10$ * R_{0}
$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}{ }^{*}\left(\mathrm{R}_{\mathrm{L}} /\left(\mathrm{R}_{\mathrm{O}}+\mathrm{R}_{\mathrm{L}}\right)\right)$
$=\mathrm{V}_{\mathrm{IN}}{ }^{*}(10 / 11)$
$\mathrm{V}_{\text {OUT }}=90.9 \%$ of $\mathrm{V}_{\text {IN }}$

Audio Interfaces: Cable Capacitance

Cable specs typically note the capacitance per unit length in picofarads (pF)
At higher frequencies the cable impedance increases, lowering signal level

For 500 ft Belden 8451 ,

$$
\mathrm{C}_{\mathrm{W}}=(34 \mathrm{pF} / \mathrm{ft})(500 \mathrm{ft})=.017 \mu \mathrm{~F}
$$

(1) Bohn / Rane

RC Low pass filter
$f_{c}=1 /\left(2 \pi{ }^{*} R_{o}{ }^{*} C_{w}\right)$
$\mathrm{R}_{\mathrm{O}}=200$ ohms
$C_{w}=0.017 \mathrm{uF}$
$f_{c}=1 /\left(2 \pi^{*} 200^{*} 0.017^{*} 10^{-6}\right)$
$f_{c}(-3 \mathrm{~dB}$ down $)=46.8 \mathrm{kHz}$

Audio Interfaces: Balanced Impedance

"In a balanced interconnect system both of the signal conductors have an equal, and nonzero, impedance to ground." (2)
(Henry Ott consultants)

Audio Interfaces: Power Transfer

Electrical Power:
$P=V^{*} \| \quad$ (or historically... $\left.P=E * I\right)$
Unit: Watts (Joules per second)
When is power necessary?

- Do some work
- Move air using a loudspeaker
- Turn a crank

(1) Bohn / Rane

Audio Interfaces: Power Transfer

Interface Power:
$I_{\text {TOTAL }}=\mathrm{V}_{\text {TOTAL }} /\left(\mathrm{Z}_{\text {TOTAL }}\right)$
$\mathrm{P}=\mathrm{I}_{\text {TOTAL }}{ }^{*}\left(\mathrm{~V}_{\text {TOTAL }}\right)$
$\mathrm{P}=\mathrm{V}_{\text {TOTAL }}{ }^{2} / \mathrm{Z}_{\text {TOTAL }}$

- For fixed max voltage, interface power is determined by input and output impedance

(1) Bohn / Rane

Power Transfer: Impedance Matching

Example:
Tube amplifier output transformers

- $Z_{\text {OUT }} \sim 2 \mathrm{k} \Omega, \mathrm{Z}_{\mathrm{L}} \sim 8 \Omega$
- Transformer turns ratio matches low-z loudspeaker impedance to high-Z amplifier output impedance

Transmission Lines

- When cable lengths exceed one wavelength of the highest frequency, transmission line behaviors must be addressed
- Source and load termination is recommended when lines approach $1 / 4$ wavelength

$1 / 4$ Wavelengths:

- $20 \mathrm{kHz}-3.75 \mathrm{~km}$
- $6.144 \mathrm{MHz}-12.2 \mathrm{~m}$

Wikipedia Commons

Transmission Lines: Wave Propagation

(6) Fun Science Demos

Transmission Lines: Impedance Matching

- Without proper termination, reflections with continue until dissipated
- Every out of phase reflection can cause destructive interference

Telephone Transmission Lines

$Z_{0}=598.2$
University of California

AES/EBU Transmission Lines

- AES/EBU inputs and outputs are designed for a 110-ohm transmission line, so use 110-ohm cable!

Review

- Voltage Transfer (Impedance Bridging)
- Analog audio interfaces
- Zin should be $\sim 10 x$ Zout impedance
- Keep reactance low, review cable capacitance for long cable runs
- Power Transfer (Impedance matching)
- Matched Zin and Zout impedance maximizes power transfer
- Typically necessary when the output is not low impedance
- Transmission Lines (Impedance Matching)
- Matching Zin and Zout to the line impedance (Z0) minimizes reflections
- Minimizing reflections maintains signal integrity

Questions

References

1. Bohn, Dennis. "Practical Line-Driving Current Requirements." http://www.rane.com/note126.html. 1991 [Revised May 1996]. Web. 11 March 2017
2. Snow, William B. "Impedance -- Matched or Optimum?" Journal of the AES. Day Month Year. Web. March 112017
3. Ott, Henry. "Balanced vs. Unbalanced Audio Interconnections." hottconsultants.com. 2 July 2008. Web. 18 March 2017.
4. Whitlock, Bill and Rod Elliot. "Design of High-Performance Balanced Audio Interfaces" http://sound.whsites.net/articles/balanced-2.htm\#s2. 2010. Web. March 122017.
5. Texas Instruments. "DIX4192 Integrated Digital Audio Interface Receiver and Transmitter." DIX4192 datasheet. February 2006 [Revised September 2010].
6. FunScienceDemos. "Sound Light Travel in Waves" Youtube. Fun Science Demos. 14 March 2015.
