Application of Measured Directivity Patterns to Acoustic Array Processing

Mark R. P. Thomas

Microsoft Research, Redmond, USA

My Background

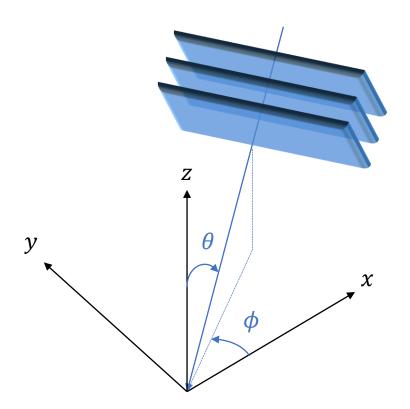
- 2011-present: Postdoctoral Researcher, Researcher (2013), Audio and Acoustics Research Group, Microsoft Research, Redmond, USA.
 - Microphone arrays (linear, planar, cylindrical, spherical).
 - Echo cancellation, noise suppression.
 - Head-related transfer functions.
 - Loudspeaker arrays.

• http://research.microsoft.com

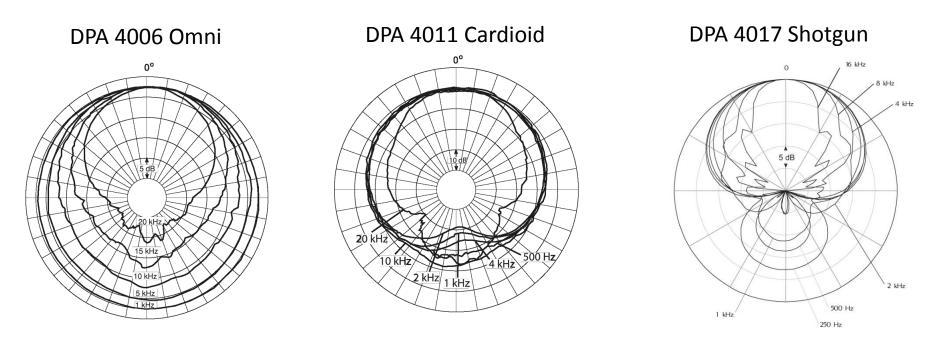
Microsoft® Research

My Background

- 2001-2002: Pre-University/Vacation Trainee, BBC Research & Development, Kingswood Warren, Tadworth, Surrey.
 - DAB data protocols, audio signal processing for HDTVs, TV spectrum planning, hardware for live TV streaming.


- 2002-2010: MEng/PhD in Electrical and Electronic Engineering, Imperial College London.
 - MEng Thesis, "A Novel Loudspeaker Equalizer."
 - PhD Thesis, "Glottal-Synchronous Speech Processing."
- 2010-2011: Research Associate, Imperial College London
 - EU FP7 project Self Configuring ENVironment-aware Intelligent aCoustic sensing (SCENIC)
 - Spherical microphone arrays, geometric inference, channel identification & equalization.

Imperial College London


Directivity Patterns: Background

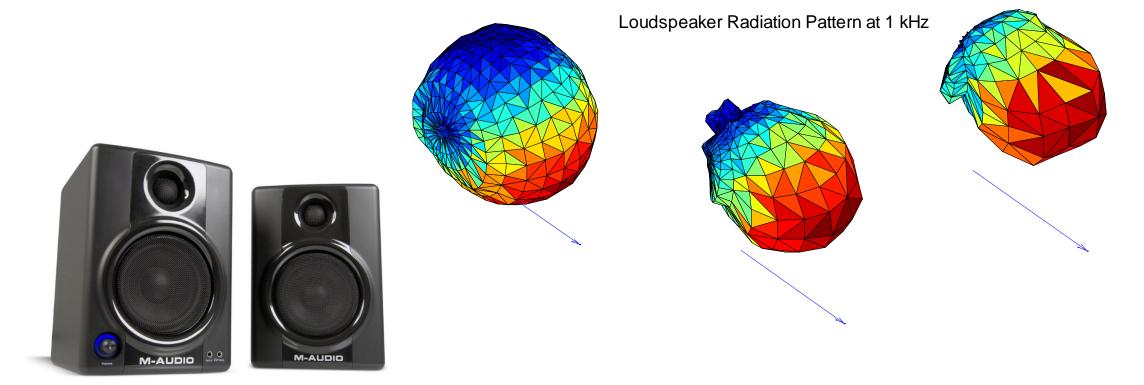
- Directivity pattern is the response to a plane wave emerging from a known direction relative to the device under test.
 - Function of azimuth ϕ
 - Function of elevation / colatitude θ
 - Function of frequency ω
- This is the 'farfield' response
 - Practically measured with a loudspeaker at a fixed distance of 1-2m.
- Independent of reverberation

Directivity Patterns: Background

- All acoustic transducers exhibit some degree of directivity
 - Sometimes by design (e.g. cardioid microphone)
 - Sometimes parasitic (e.g. mounting hardware example to come)

Other Examples of Directional Behaviour

Head-Related Transfer Functions (HRTFs)



Other Examples of Directional Behaviour

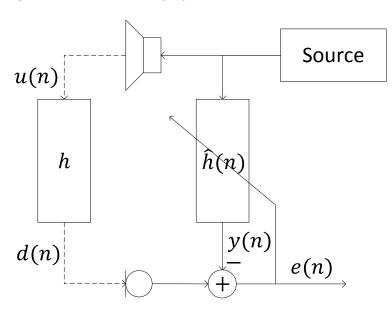
Loudspeakers

Loudspeaker Radiation Pattern at 200 Hz

Loudspeaker Radiation Pattern at 10 kHz

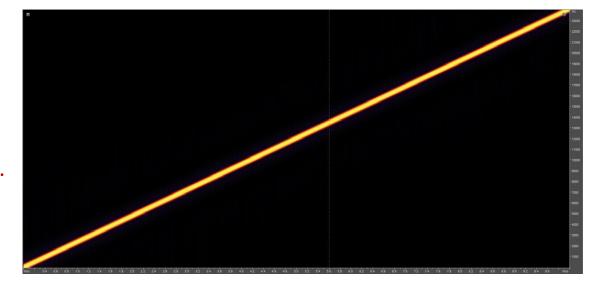
Left image: http://www.m-audio.com

Contents


- Background on directivity patterns
- Part 1: Design of a measurement rig
 - Test signals
 - Loudspeaker placement
 - Extrapolation/interpolation of missing data
- Part 2: Practical Applications
 - Beamforming with Kinect for Xbox 360
 - Head-related Transfer Functions
- Conclusions

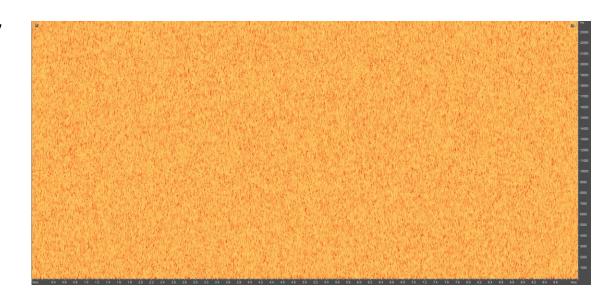
Design of a Measurement Rig: Requirements

- 1. Must be able to reliably measure the linear **impulse response** (transfer function) between a source signal and a test microphone.
- 2. Source signal must be **spectrally flat**.
 - Loudspeaker response may need compensating.
- 3. Sources must be able to be moved to a precise location.
- 4. Sources must be sufficiently far away to avoid nearfield effects.
- 5. Environment must be anechoic or sufficiently far away from acoustic reflectors.

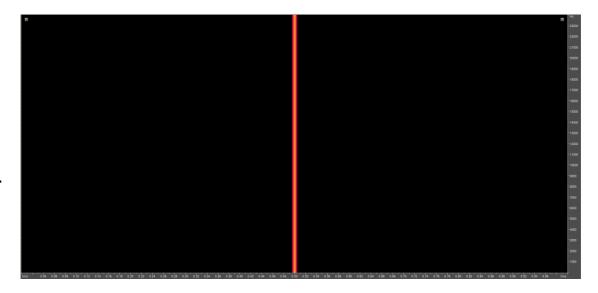

Test Signals

- Source is a known signal u(n).
- Record signal d(n)
 - Has been filtered by unknown **finite impulse response** (FIR) system h.
- Estimate h by minimizing the difference between y(n) and d(n).
 - FIR system identification is a convex problem: always a unique minimum.
 - Most solutions are closed form (nonadaptive).
 - Adaptive solutions are useful for cases when h is constantly changing.

Choice of Test Signal: Chirp-Like


- Chirp-Like Signals
 - Linear chirp
 - + Easy to produce
 - + Intuitive
 - System ID requires generalized methods.
 - Time-stretched pulse (TSP)
 - + Pulse and its inverse are compact in support. Very low-complexity system ID.
 - + Robust to nonlinearities.

 Energy is concentrated in a narrow band; possibility of standing waves in cone material producing nonlinearities.

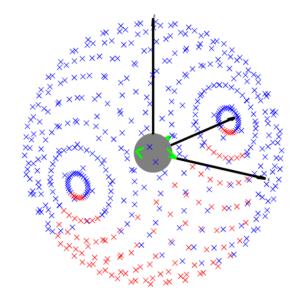

Choice of Test Signal: Pseudorandom Noise

- Maximum-length sequences (MLS) / perfect sequences
 - + Autocorrelation is a perfect impulse.
 - + Fast system ID with modified Hadamard transforms.
 - Sensitive to nonlinearities.
- Gaussian Noise
 - + Easy to generate
 - + Autocorrelation theoretical impulse with sufficiently long data
 - Several solutions for system ID, some inexact and/or computationally expensive.
- + Spectrally flat (energy not concentrated in a single spectral band).

Choice of Test Signal: Direct Impulse

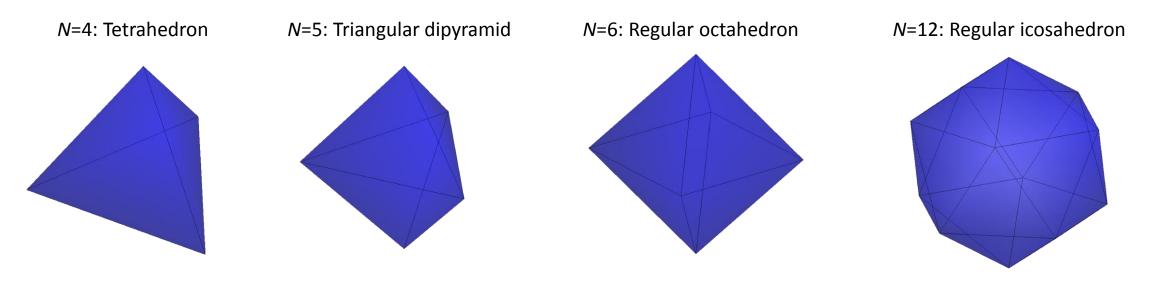
- + Recorded signal is the system impulse response.
- + Straightforward to produce in the digital domain.
- In the analogue domain, gunshots, hammer blows and clickers have been used for room acoustics.

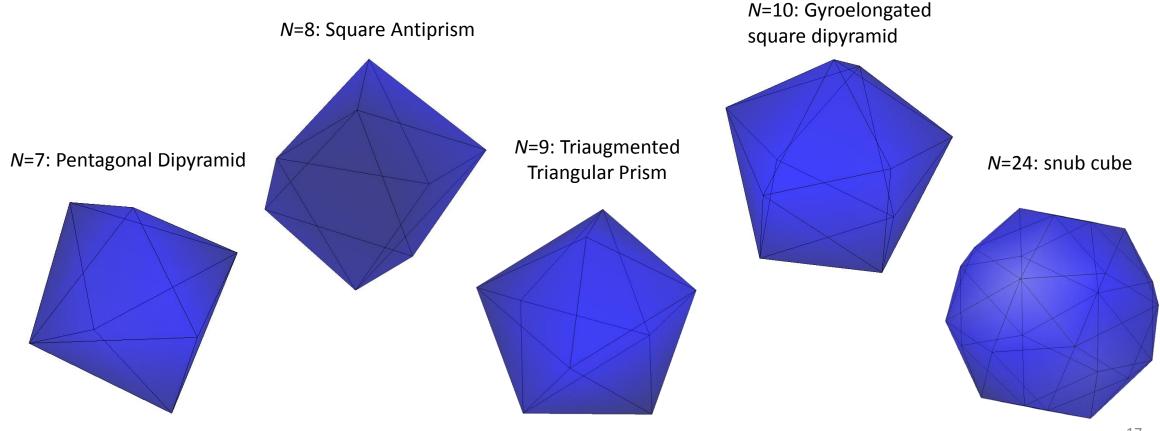
- Requires high amplitudes in order to provides good signal-to noise ratio (risk of nonlinearity).


Contents

- Background on directivity patterns
- Part 1: Design of a measurement rig
 - Test signals
 - Loudspeaker placement
 - Extrapolation\interpolation of missing data
- Part 2: Practical Applications
 - Beamforming with Kinect for Xbox 360
 - Head-related Transfer Functions
- Conclusions

Equiangular Sampling


- Mount an array of loudspeakers on a semicircular arc and rotate about the device
 - Example: 16 loudspeakers spaced 11.25°, poles at the sides.
 - + Practically continuous azimuth.
 - Colatitude angles fixed at discrete locations.
 - Missing spherical wedge underneath.
 - Mechanically complicated
 - Nonuniform sampling
- Other variations on the theme
 - Rotate device relative to fixed loudspeaker.


Uniform Sampling

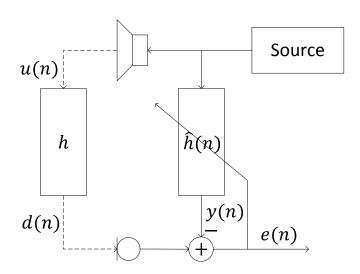
- Place sources in fixed locations around the device under test
 - Uniform distribution of test points can be ensured.
 - + No moving parts
 - Only 4 truly uniform solutions in 3D! The points lie on the vertices of 4 regular polyhedra.

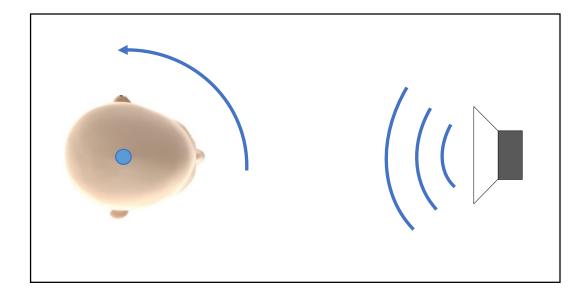
Near-Uniform Sampling: Geometric Solutions

There a few geometric solutions to the near-uniform sampling case.

Near-Uniform Sampling: Numerical Solutions

- For all other *N*, only **numerical solutions** exist
 - This is the **Thomson Problem**: determine the **minimum electrostatic potential** energy configuration of *N* electrons on the surface of a unit sphere.
 - I use the **Fliege** solution¹.
- Solutions have several other uses:
 - Spherical microphone arrays
 - Geodesic domes
 - Solutions in higher dimensions useful for quantization in coding schemes.

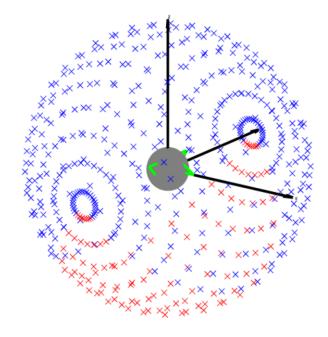




¹J. Fliege, "The distribution of points on the sphere and corresponding cubature formulae," IMA J. Numer. Anal. Vol. 19, no. 2, pp. 317-334, 1999.

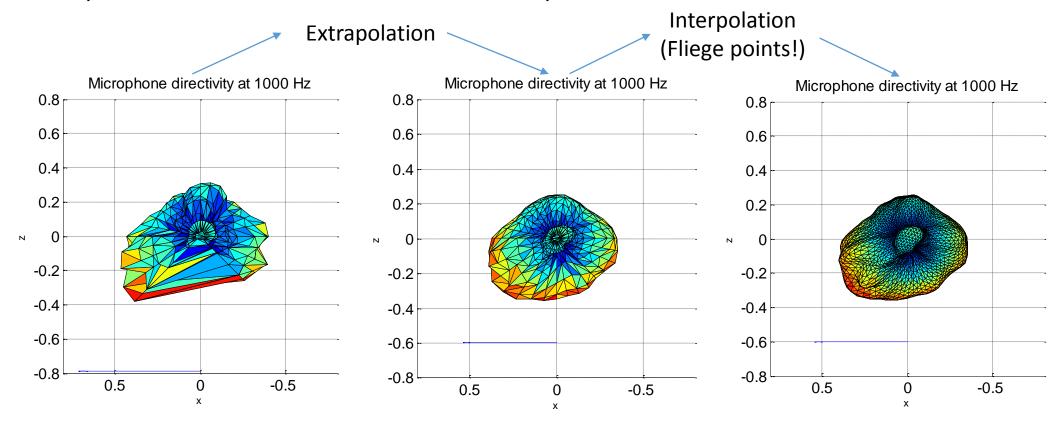
Continuous Sampling

- Sound source is continuous Gaussian noise
- Device under test (in this case a human head) is continuously rotated.
- NLMS adaptive filter identifies instantaneous transfer function
 - Assumption: filter is constantly converged to correct solution.
 - Only suitable for horizontal plane.



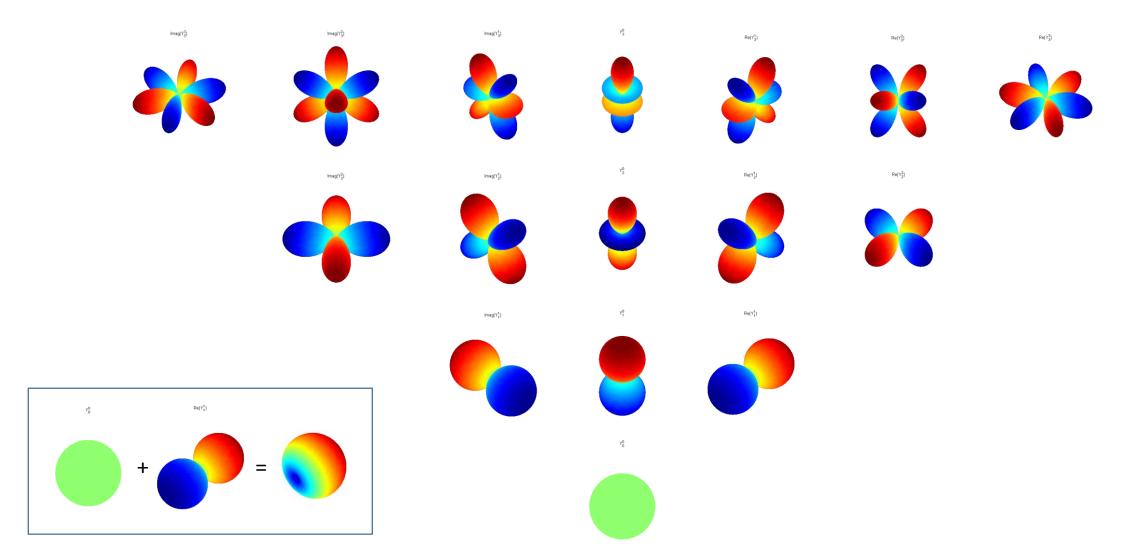
Contents

- Background on directivity patterns
- Part 1: Design of a measurement rig
 - Test signals
 - Loudspeaker placement
 - Extrapolation / interpolation of missing data
- Part 2: Practical Applications
 - Beamforming with Kinect for Xbox 360
 - Head-related Transfer Functions
- Conclusions


The Missing Data Problem

- A spherical wedge of data is missing beneath the test subject.
- Polynomial / spline interpolation do not work well
 - Do not exploit the **natural periodicity** of the data.
 - Do not account for curvature of the surface.
 - Solutions tend to be numerically unstable.
- Need an interpolation/extrapolation scheme better suited to data in spherical coordinates.

The Missing Data Problem


- Extrapolation: the missing spherical wedge underneath.
- Interpolation: the data between measurement points.

Spherical Harmonics

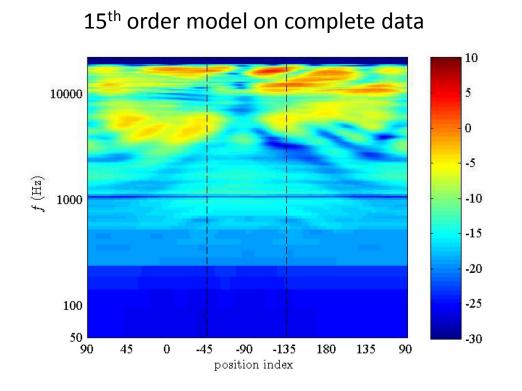
- Spherical harmonics are the angular solutions to the wave equation in spherical coordinates
 - They form an **orthogonal basis** for functions on the sphere.
 - Useful for analysis of orbital angular momentum of electrons.
 - Also useful for wave field analysis with spherical microphone arrays.
- They are to spherical space as the sine/cosine functions are to 1D space
 - They are the basis for a **spherical Fourier Transform**.
 - Think of it as a spatial frequency domain.
- Spherical harmonics have **discrete solutions** with degree n and order m.

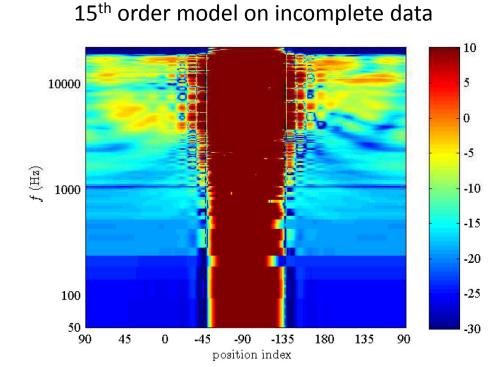
Spherical Harmonics

Extrapolation with Spherical Harmonics

- If the sphere were complete, there would be **512 points** in total
 - 16 colatitude angles x 32 azimuth angles.
 - This permits a **15**th **order** model.
- The actual number of measured points is 400
 - 16 colatitude angles x 25 azimuth angles.
 - We cannot compute a 15th order model in the unknown region.
- How do we perform a good fit?

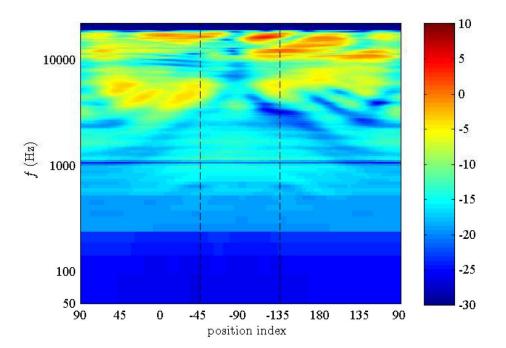
J. Ahrens, M. R. P. Thomas, I. J. Tashev, "HRTF Magnitude Modeling Using a Non-Regularized Least-Squares Fit of Spherical Harmonic Coefficients on Incomplete Data," *APSIPA* 2012.

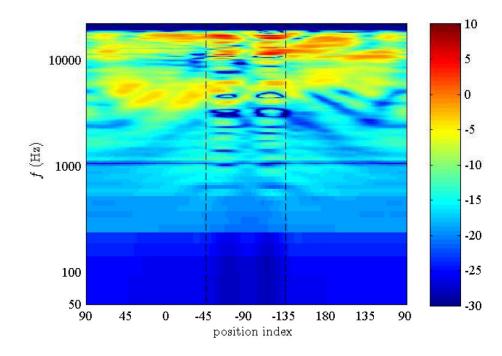

Test Subject: B&K Head and Torso Simulator


- B&K Head and Torso Simulator (HATS)
 - Simulates anthropometry of average human.
- Baseline measurements
 - Taken both right way up and upside down
 - Data combined to form complete sphere.

Fitting Problem

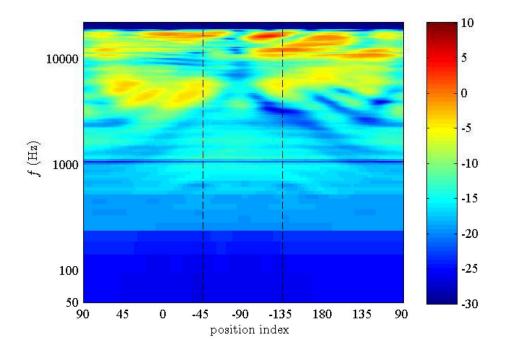
- Spherical harmonics aren't enough!
 - 15th order model is very poorly behaved when reconstructing missing region.

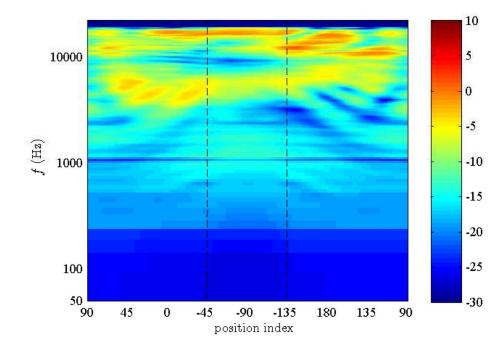



Regularization to the Rescue?

- Regularized least-squares fit can help prevent blow-up.
 - Regularization hurts the data we know to be correct.
 - Still a poor fit: artificial periodicity creeps in.

15th order model on complete data

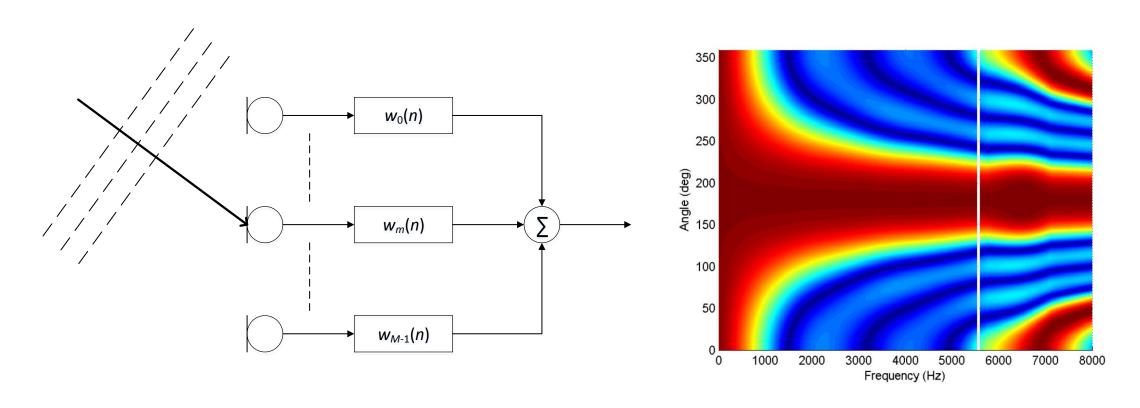

Regularized 15th order model on incomplete data


Non-Regularized Least-Squares Fit

- There is theoretically enough data for a 3rd order model.
 - 1. Extrapolate unknown data using a 3rd order model.
 - 2. Combine with the original data (leaves this unharmed).
 - 3. Perform 15th order non-regularized fit over the entire sphere.

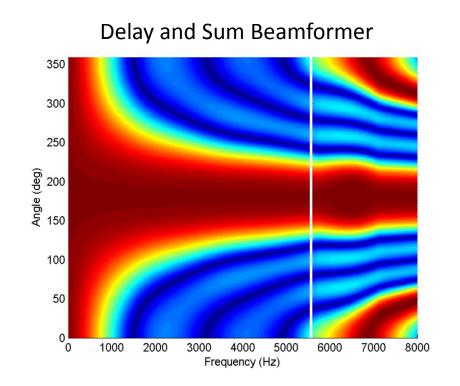
15th order model on complete data

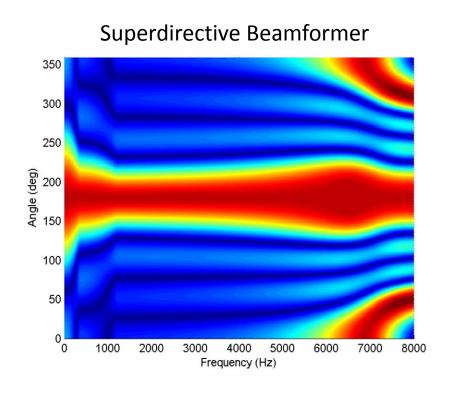
Proposed model on incomplete data



Contents

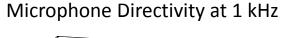
- Background on directivity patterns
- Part 1: Design of a measurement rig
 - Test signals
 - Loudspeaker placement
 - Extrapolation\interpolation of missing data
- Part 2: Practical Applications
 - Beamforming with Kinect for Xbox 360
 - Head-related Transfer Functions
- Conclusions

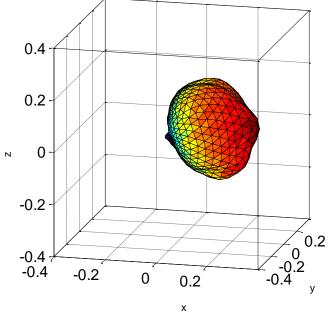

Delay and Sum Beamformer (DSB)

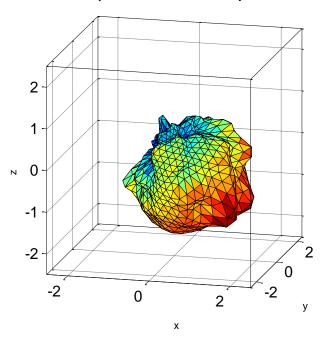

• DSB temporally aligns wavefronts so that they sum coherently in a given direction.

Optimal Superdirective Beamformer

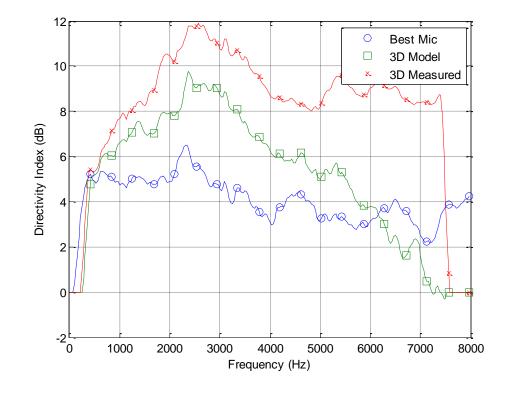
- Calculate weights by **optimization** to synthesize a **frequency-independent** pattern.
 - Can exploit true directivity pattern.
 - Practical limitations with white noise gain at low frequencies.


Kinect for Xbox 360


- RGB camera
- Depth camera
- Motorized tilt
- 4 cardioid microphones

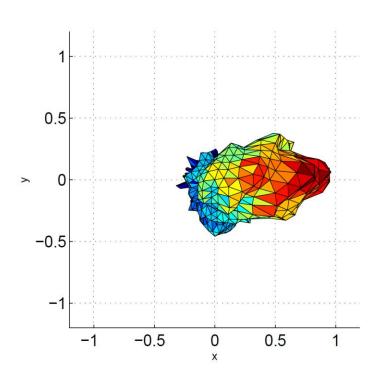

Kinect for Xbox 360

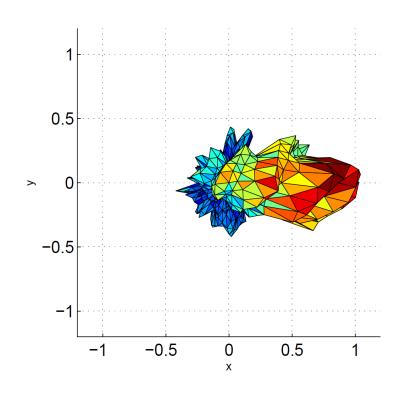
- Classic cardioid at 1 kHz, points to the floor at 5 kHz.
- Need to design with measured directivity patterns in mind.


Microphone Directivity at 5 kHz

Performance Metrics

- Directivity index: log ratio of wanted signal to unwanted signals
 - Examples: Single cardioid: 4.8 dB, single omni: 0 dB.
 - ~4-6 dB improvement over best microphone
 - Cardioid model OK up to ~3 kHz
 - Cardioid model suffers > 6 kHz
- Speech recognition task:
 - **50% relative** (5% absolute) in word error rate over 3D model.

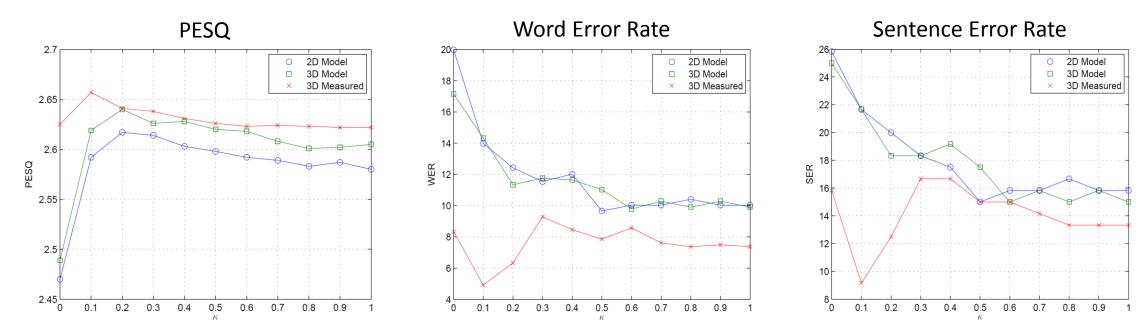

	PESQ (1-4.5)	WER (%)	SER (%)
Best Mic	2.13	18.47	31.67
3D Model	2.64	9.79	15.00
3D Measured	2.66	4.92	9.17



Optimal Beamforming with Kinect

Beamformer with 3D cardioid model at 1 kHz

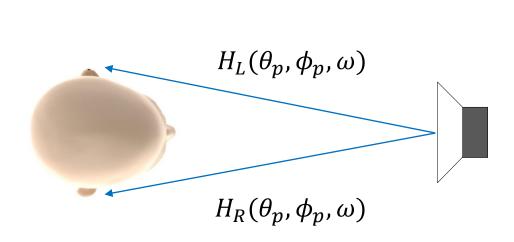
Beamformer with 3D measurements at 1 kHz

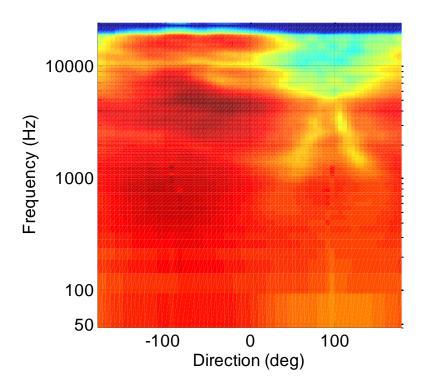


M. R. P. Thomas, J. Ahrens, I. J. Tashev, "Optimal 3D beamforming using measure microphone directivity patterns," IWAENC 2012.

Beamforming with Kinect – Regularization

- Problem: danger of becoming too device-specific
 - Account for manufacturing variations by adding **regularization** becomes closer to delay-and-sum (lower performance).
 - Solution: a) calibrate during manufacture (expensive), or b) determine necessary regularization.


M. R. P. Thomas, J. Ahrens, I. J. Tashev, "Beamformer design using measured directivity patterns: robustness to modelling error," APSIPA, 2012.


Contents

- Background on directivity patterns
- Part 1: Design of a measurement rig
 - Test signals
 - Loudspeaker placement
 - Extrapolation\interpolation of missing data
- Part 2: Practical Applications
 - Beamforming with Kinect for Xbox 360
 - Head-related Transfer Functions
- Conclusions

Head-Related Transfer Functions

- HRTFs capture acoustic properties of the head
 - Enables rendering of 3D audio over headphones

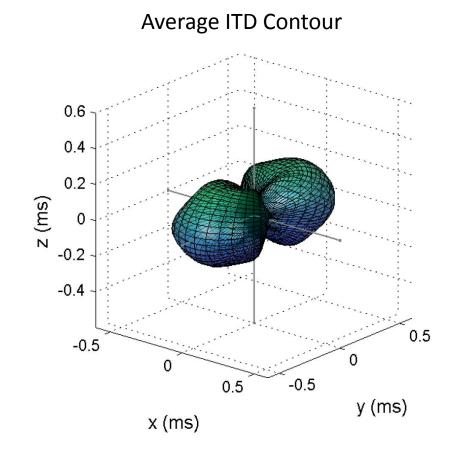
Personalizing HRTFs

- HRTFs are highly personal
 - Function of anthropometric features (head width, height, ear position, size etc.).
- HRTFs provide temporal and spectral cues for source localization
 - Inter-aural time differences (ITD)
 - Inter-aural level differences (ILD)
 - Pinna resonances
 - ITD and ILD insufficient: they help localize to within a cone of confusion.
 - Introduce subtle **spectral cues** to help resolve elevation and front/back.
- Should be used in conjunction with real-time head tracking
 - Head rotations provide additional information for source localization.

Measuring and Estimating HRTFs

- 1. Anechoic chamber and measurement rig
 - Accurate
 - Expensive
- 2. Finite-element modelling
 - Less accurate than measurement
 - **Slow**: can take a single machine several days
- 3. Estimate from anthropometric data
 - Less accurate than measurement
 - Requires **no invasive measurements**

HRTF Magnitude Synthesis


- 1. Measure anthropometric features on a large database of people.
- 2. Represent a new candidate's anthropometric features as a sparse combination α of people in the database.
- 3. Combine HRTF magnitude spectra with **same weights** α to synthesize personalized HRTF.

P. Bilinski, J. Ahrens, M. R. P. Thomas, I. J. Tashev, J. C. Platt, "HRTF magnitude synthesis via sparse representation of anthropometric features," *ICASSP*, 2014.

HRTF Phase Synthesis

- Most **ITD contours** have near figure-of-8 shape.
- Phase synthesis by scaling average ITD contour.
 - Also estimated with anthropometric features.
 - Appears to be perceptually sufficient with informal testing.

I. J. Tashev, "HRTF phase synthesis via sparse representation of anthropometric features," ITA Workshop, 2014.

Objective Evaluation of HRTF Magnitude Synthesis

- Very difficult to evaluate **perceptual quality** of HRTFs
 - Many more degrees of freedom: both spatial localization and perceived quality.
 - Not necessarily correlated.
 - Risk of 'uncanny valley' effects: as realism increases, so too do the standards by which we judge the rendering quality.
- Log spectral distance used as an objective measure of magnitude response fit:

Direction	Frequency [Hz]	Best Classifier	Sparse Representation	HATS	Worst Classifier
Straight	50 – 8000	2.46	3.53	6.13	7.86
	0 – 20000	4.20	5.58	7.97	10.25
All	50 – 8000	4.32	4.49	7.35	7.85
	0 – 20000	9.48	9.88	13.77	14.93

HRTF Synthesis – Conclusions

- This is by no means a solved problem!
- First step is reliable and consistent measurement of HRTFs.
- Subjective testing for HRTFs is a big research problem
 - How is **perceived quality** linked to **localization accuracy**?
 - How soon does **listener fatigue** set in?
 - What is the nature of the uncanny valley?
- Objective measures equally in their infancy
 - Classic measures (PESQ, LCQA, LSD, MSE etc.) do not measure spatial component.

Contents

- Background on directivity patterns
- Part 1: Design of a measurement rig
 - Test signals
 - Loudspeaker placement
 - Extrapolation\interpolation of missing data
- Part 2: Practical Applications
 - Beamforming with Kinect for Xbox 360
 - Head-related Transfer Functions
- Conclusions

Conclusions

- Directivity patterns are everywhere!
- Many practical methods for measurements with real devices including:
 - Microphone (arrays)
 - Loudspeakers
 - Head-related transfer functions
- Some degree of choice on source signal, loudspeaker configuration and interpolation / extrapolation of missing data.
- Practical uses in:
 - Beamformer design (improved weights synthesis adds no overhead at runtime).
 - Personalization of HRTFs.
 - Also loudspeaker enclosure design.

Thank you! Questions?