Future-proof surround sound mixing using Ambisonics and Reaper

Education Material and a Practical Workflow for Ambisonic Production and Publishing

Dr Bruce Wiggins
b.j.wiggins@derby.ac.uk
http://www.derby.ac.uk/staff-search/dr-bruce-wiggins
http://www.BruceWiggins.co.uk
Topics for Today

• Ambisonics
 – Describing what it is.
 – Describing why you want it.
 • Decoding
 – Surround
 » Regular
 » Higher Order
 » Irregular
 – Stereo
 – Mono!

• Practical Considerations:
 – Mixing/Production
 • Reaper

• Demonstrations
Teaching and Using Ambisonics

• For a number of years, I’ve been using Ambisonics with:
 – Both BSc and BA students
 • Some interested in the technology/theory behind Ambisonics
 • Some interested in the results promised by such a technology.
 • Some with a good background in Maths/Electronics etc.
 • Some with a good background in Music/composition etc.
The Challenge

• Allowing students from multiple disciplines to use Ambisonics in their work
• Giving enough understanding of the system so correct setup & routing occurs and informed experimentation can take place.
 – Few books cover Ambisonics
 – Papers on the subject can be mathematically heavy going.
• Allow them to be able to distribute that work.
How to explain Ambisonics?

- Ambisonic encoding is based on Spherical Harmonic Decomposition of a sound field...

\[
\begin{align*}
\left(\Delta - \frac{1}{c^2} \frac{\delta^2}{\delta t^2} \right) \phi (\vec{r}, t) &= -q (\vec{r}, t) \\
(\alpha \phi) &= N_{mn} \cdot P_{mn} (\sin \phi) \begin{cases}
\cos (n\theta) & \text{for } \sigma = 1 \\
\sin (n\theta) & \text{for } \sigma = -1
\end{cases}
\end{align*}
\]

\[
p (\vec{r}) = \sum_{m=0}^{\infty} (2m+1) j^m j_m (kr) \sum_{0 \leq n \leq m, \sigma = \pm 1} B_{mn}^\sigma Y_{mn}^\sigma (\theta_r, \phi_r)
\]

\[
N_{mn} = \sqrt{\frac{(m-n)!}{(m+n)!}} \quad c_0 = 1
\]

\[
C = \begin{pmatrix}
Y_{00}^1 (\theta_1, \phi_1) & Y_{00}^1 (\theta_2, \phi_2) & \cdots & Y_{00}^1 (\theta_j, \phi_j) & \cdots \\
Y_{01}^1 (\theta_1, \phi_1) & Y_{01}^1 (\theta_2, \phi_2) & \cdots & Y_{01}^1 (\theta_j, \phi_j) & \cdots \\
Y_{10}^1 (\theta_1, \phi_1) & Y_{10}^1 (\theta_2, \phi_2) & \cdots & Y_{10}^1 (\theta_j, \phi_j) & \cdots \\
Y_{11}^1 (\theta_1, \phi_1) & Y_{11}^1 (\theta_2, \phi_2) & \cdots & Y_{11}^1 (\theta_j, \phi_j) & \cdots \\
\vdots & \vdots & \ddots & \vdots & \ddots \\
Y_{M0}^1 (\theta_1, \phi_1) & Y_{M0}^1 (\theta_2, \phi_2) & \cdots & Y_{M0}^1 (\theta_j, \phi_j) & \cdots \\
1 & Y_{M1}^1 (\theta_1, \phi_1) & \cdots & Y_{M1}^1 (\theta_j, \phi_j) & \cdots \\
\end{pmatrix}
\]
Combining Microphone Patterns

- It’s possible to create any microphone pattern between an omni-directional and a figure of 8, by x-fading between the two...

Omni
\[r(\theta) = 1 \]

Figure of 8
\[r(\theta) = \cos(\theta) \]

Mixing equation
\[r(\theta) = 0.5 \times ((2-d) \times \text{omni} + (d \times \text{f8})) \]
Combining Figure of Eights

- Adding together two perpendicular figure of eight microphones will result in a figure of eight microphone positioned between them:

\[r(\theta) = \cos(\theta) \quad \text{and} \quad r(\theta) = \sin(\theta) \]

\[0.707 \times (\cos(\theta) + \sin(\theta)) \]
The SoundField Microphone

The SoundField microphone uses the two principles discussed above:
– Omni + Figure of 8
– Adding Two figure of 8’s
in order to produce any first order polar response in any direction using just one microphone.

Picture of a SoundField ST250
The SoundField Microphone

• First the three figure of 8 microphones are summed to produce a figure of eight pointing in any direction.

• Then this is mixed with the omni-directional mic to produce a variable mic pattern in this direction.
How do we choose some mics?

• Given a mic system where we can generate mic signals that are:
 – Pointing in any direction we want
 – Using whatever polar pattern we wish…
• …how do we decide what we use for:
What is ‘Ambisonics’?

• What is Ambisonics?
 – A system where the spatial encoding of the audio is separate from the decoding of that audio to a set of speakers.
 – A set of rules and equations that help to optimise and quantify the performance of a multi-speaker audio presentation.
 – A system based on coincident recording principles.
 – An extendable system based on Spherical Harmonics (mic patterns!).
 – A future proof audio format.
Why should you want it?

• Can be successfully decoded to many different speaker arrays:
 – Mono
 • Mono compatibility is still important!
 • Just use W, omni feed!
 – Stereo
 • UHJ allows for stereo compatible downmix
 • Preserves level balance between sources
 • Hard panning (only amplitude) is avoided, making headphone listening more natural
Why should you want it?

- Decode to standard surround sound arrays (we want people to hear this stuff!):
 - 4.0
 - 5.1
 - 7.1
 - x.x
- Decode to larger, arbitrary speaker arrays
 - Better for large events (use more speakers, rather than bigger speakers!)
$W = 1/\sqrt{2}$

$X = \cos(\theta)$

$Y = \sin(\theta)$

$g_w = \sqrt{2}$

$g_x = \cos(\Phi)$

$g_y = \sin(\Phi)$

$S = 0.5 \times [(2 - d)g_wW + d(g_x X + g_y Y)]$

θ is desired source angle

Φ is speaker angle

S is speakers output
Higher Order Ambisonics

- Uses more input signals…
- …which can result in better control of the speaker feeds and, hence, reproduced sound field.

- **0th Order**
- **1st Order**
- **2nd**
Polar Pattern Choice
Visualisations

Web Versions

Ambisonic Signals
http://www.brucewiggins.co.uk/AmbiVis/Spherical

1st, 2nd & 3rd Order
Regular Decode
http://www.brucewiggins.co.uk/AmbiVis/Regular

Why not 3rd Order
All the time???
http://www.brucewiggins.co.uk/AmbiVis/Detent

3rd Order
Irregular Decode
http://www.brucewiggins.co.uk/AmbiVis/Irregular
Decoders for irregular speaker arrays

- Irregular decoders cannot be optimised so easily.
- For left/right symmetrical systems:
 - Amplitude
 - Polar pattern
 - Angular spread
- Must all be optimised, per speaker pair.
 - This means solving a set of non-linear simultaneous equations.
 - Heuristic methods can be used to solve this problem.
Higher Order Irregular Decoders

- Higher Order Components give two main benefits:
 - More focused polar patterns
 - Gives more ‘focused’ localisation
 - Needs more speakers
 - Allows asymmetrical decode patterns to be used
 - Ideal for irregular speaker arrays (ITU….)
Higher Order Decoders

2nd Order Decoder 1

4th Order Decoder 1

2nd Order Decoder 2

4th Order Decoder 2
Energy/Velocity is Not the Only Way!

- **LF Time Difference**: 0 degrees
 - **Source/Decoded Source Angle**
 - **Amplitude**

- **HF Amplitude Difference**
 - **Source/Decoded Source Angle**

- **4th Order Decoder 1**
 - **G Format**
 - **Real Source**

- **4th Order Decoder 2**
 - **G Format**
 - **Real Source**

Dr Bruce Wiggins
Visualisations

Web Versions

Ambisonic Signals

http://www.brucewiggins.co.uk/AmbiVis/Spherical

1st, 2nd & 3rd Order
Regular Decode

http://www.brucewiggins.co.uk/AmbiVis/Regular

Why not 3rd Order
All the time???

http://www.brucewiggins.co.uk/AmbiVis/Detent

3rd Order
Irregular Decode

http://www.brucewiggins.co.uk/AmbiVis/Irregular
Practical Ambisonics

- Example Routing for 1st Order Ambisonics.

Diagram:
- Audio Track 1 and Audio Track 2 input into B-Format Encoders.
- Outputs from B-Format Encoders feed into 'Dry' 4-channel Bus.
- 'Dry' 4-channel Bus outputs to 'Wet' 4-channel Bus.
- 'Wet' 4-channel Bus feeds into 4 Channel Ambisonic Reverb.
- Outputs from the 4 Channel Ambisonic Reverb are split to W Bus, X Bus, Y Bus, and Z Bus.
- W Bus, X Bus, Y Bus, and Z Bus are connected to Ambisonic Decoder.
- Ambisonic Decoder outputs to Speaker 1, Speaker 2, Speaker 3, Speaker 4, Speaker 5, and Speaker 6.
Practical Ambisonics

• Things to note:
 – Channel Counts can get high:
 • 1st order = 4
 • 2nd order = 9
 • 3rd order = 16
 • Nth order = (N+1)^2
 – The channels don’t represent speaker feeds
 – The number of channels per track can change throughout the project
 – We might not want to route all channels in one track to all the channels in another track:
• Most DAWs don’t like the above very much!
• Many Music Producers don’t like using modular hosts!
Reaper

• Reaper is great for Ambisonics:
 – It’s amazingly flexible
 – Up to 64 channels per track
 – Tracks aren’t setup by speaker arrangement
 – Routing anything to anywhere is possible…
 – …with or without hardware outputs
 – Multi-channel plug-ins are supported…on any track of any channel count!
 – It’s really good value for money

 • “REAPER requires no dongle, has no copy protection, and can be evaluated with full functionality.”
Reaper
Built in Plug-in Engine (Jesuasonic)
Supports OSC & Python/Perl Scripts

- OSC can be used to automate any action via a network.
- Reascript allows for scripting of any reaper commands or APIs via Python and Perl.
 - Macros
 - Complete Automation

Picture of TouchOSC from http://hexler.net/
Multi-Channel File Support

• It will read and write multi-channel:
 – Wave Files
 – FLAC
 – WavePac (supports more channels than FLAC)
 – Ogg Vorbis
 – And others….

• Any tracks input or output can be rendered to a multi-channel file.
• Hierarchical (parent/child) Tracks make routing straight forward
 – Make a multi-channel, B-Format Bus, the parent
 – All multi-channel child tracks are, summed to that bus.
WigWare Plug-ins

- 1st, 2nd & 3rd order regular decoders
 - Include NFC and speaker distance compensation
- 1st, 2nd, 3rd & 4th order irregular ITU 5.0 decoders
 - Multiple solutions per order
 - Includes NFC and speaker distance compensation.
- 1st, 2nd, 3rd & 4th order panners
 - Polar or XY interface
 - W panning, or NFC and Distance Filtering
- 1st Order 3D Reverb

- Planned
 - UHJ Encoder/Decoder
 - B-Format Manipulations
 - Rotate/Tumble/Dominance etc.
 - 3D Delay
Example Configuration
Demonstrations