

Audio Transport over HDMI

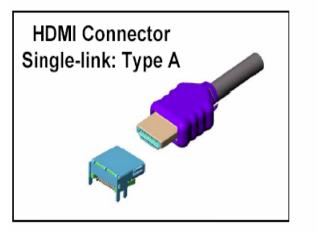
How good do you want it to sound?

John Dawson President, Arcam johnd@arcam.co.uk

AES 24th UK CONFERENCE June 2011

High-Definition Multimedia Interface - history

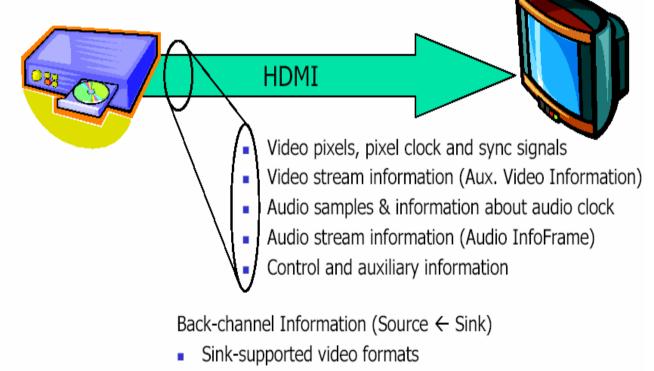
- Developed by 7 companies in 2002/3 Hitachi, MEI, Philips, Silicon Image, Sony, Thomson, Toshiba
- HDMI is based on DVI (Digital Visual Interface) for RGB digital video
- HDMI is backwards compatible with DVI and adds
 - Audio, LPCM to 8 channels or compressed
 - YCrCb digital video support (4:2:2 and 4:2:4)
 - Universal CEC (Consumer Electronics Control)
 - Auto configuration via E-EDID interrogation
 - Compact and sub-miniature connectors
 - A compliance program


High-Definition Multimedia Interface - history

- There have been 5 main versions in 8 years. The additions are all optional, for continued backwards support.
- HDMI 1.0 uncompressed audio, plus SD and HD video, over a single cable at up to 5.1 Gb/s
- HDMI 1.1 adds DVD-Audio support
- HDMI 1.2 adds native SACD (DSD) support plus CEC
- HDMI 1.3 doubles bandwidth to 10.2 Gb/s, adds HD codec support (Dolby and DTS)
- HDMI 1.4 adds 3D video support, plus 100Mb/s Ethernet and ARC (audio return channel)

AES 24th UK CONFERENCE June 2011

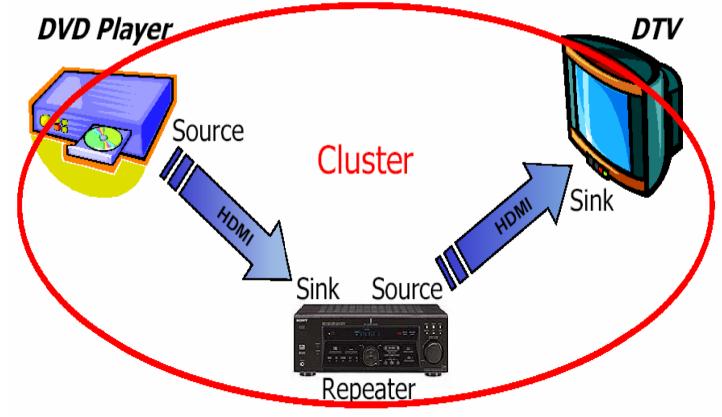
HDMI Connector vs DVI



Dual-link: Type B, 5mm wider than Type A. DVI1.0 Connector

Type A is meant for CE devices Type B is meant for PCs

HDMI Payload (1.0 to 1.3)

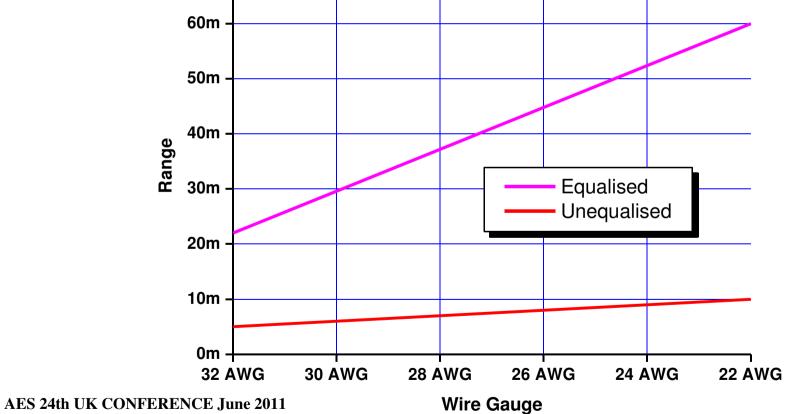


- Sink-supported audio formats
- Other Sink characteristics

AES 24th UK CONFERENCE June 2011

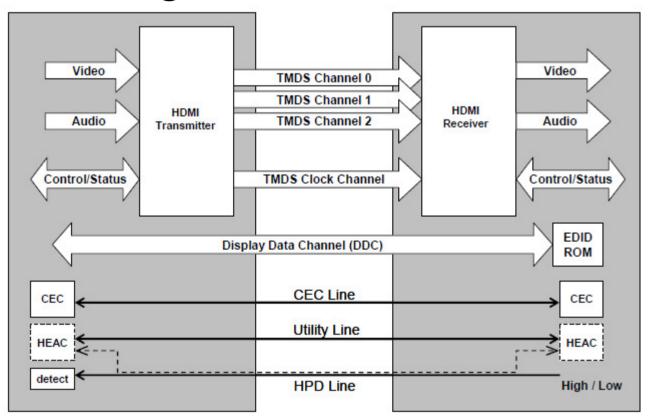
HDMI - typical system with a Repeater

AES 24th UK CONFERENCE June 2011



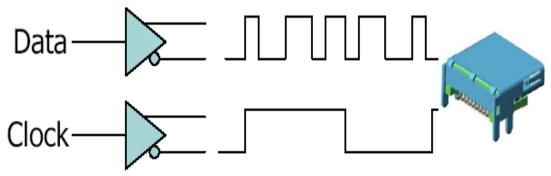
HDMI Digital Link Capabilities

- Bandwidth up to 5.1/10.2 Gb/s
 - 24,30,36,48-bit video at 25 to 165/340 MHz clock
 - 1080p video plus 8ch audio at 24-bits, 192ks/s
 - Ethernet to 100Mb/s (HDMI 1.4 only)
- Range
 - Original specification says 5m
 - Depends on cable (thicker is better skin effect)
 - Can be extended with equalisers

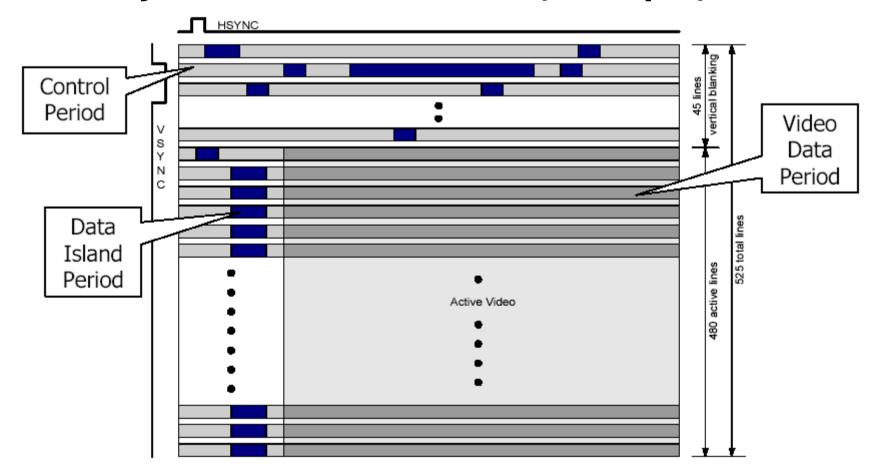


HDMI Range at 165MHz clock rate

HDMI Block Diagram


HDMI Signal Coding

- Uses a DC-coupled TMDS link
 - 100 ohm balanced pairs with shields
 - 50 ohm termination
 - Nominal signal level 500mV p-p (10mA current switch)
- I clock channel and 3 data channels
 - 6 channels in type B (PC only)
- Coding is 8 to 10 in a transition minimised and DC-balanced sequence


Signals on the HDMI Cable

- 1 clock line, 3 data lines
- Non-coherent clock uses PLL in Tx and Rx to align
 - Clock typically 27, 74.25, 165 MHz
 - Pixel rate 1x, 2x, 5x or 10x clock rate

Data Layout in a Video Frame (example)

Data Island Payload

- Audio data and much auxiliary information are carried in Packets within Data Islands
- HSYNC, VSYNC are also carried during the Data Island Periods
- Packet Types:
 - Audio Samples and Audio Stream
 - Audio Clock Recovery data
 - InfoFrames: Auxiliary Video IF (AVI), Audio IF, Vendor-Specific IF (includes 4K and 3D video format info)

Auxiliary Video Info Frame

Sends video control data from source to sink:

- RGB/YCrCb and pixel encoding (4:4:4; 4:2:2)
- Quantisation range (full or limited)
- Colorimetry
- Aspect ratio
- Overscan
- Video Format ID code 2D, 3D, 4K, additional frame rates
- Pixel repetition factor (SD video requires 2x or more pixel repetitions to carry enough audio data and be >25MHz)
- Content type (video, photo, graphics, game)

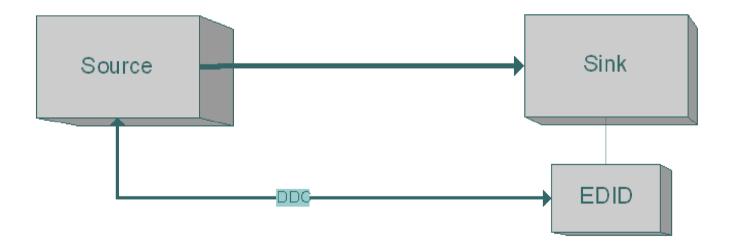
Audio Info Frame

Sends audio control data from source to sink, (to supplement IEC 60958 Channel Status bits and IEC 61937 Burst Info and/or stream data embedded in the audio packets)

- Channel count
- Sample Frequency or presence of DSD stream
- Channel/speaker allocations
- Level Shift Value (for downmixing)
- LFE channel playback level (0 or +10dB)

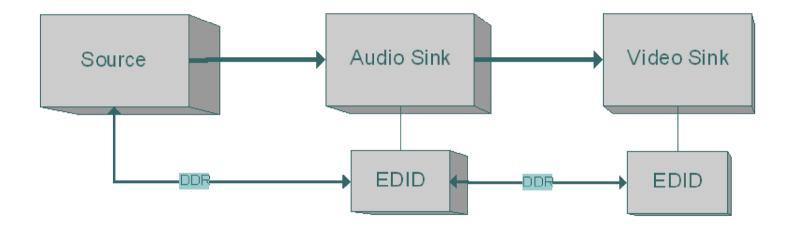
HDMI – Supported Audio Formats

- HDMI 1.0 2ch 24-bit, 32, 44.1, 48 kHz; DD, DTS
- HDMI 1.1 adds 8ch 24-bit, 32 96kHz (DVD-A)
- HDMI 1.2 adds native and compressed DSD
- HDMI 1.3 adds 8ch 24/192; Dolby True HD, Dolby Digital+, DTS-HD and DTS Master Audio (HD-DVD and BD formats)
- HDMI 1.4 adds HEAC (Ethernet 100-base TX and Audio Return Channel). ARC must support IEC 60958-1 (6.144MHz clock, 2 ch 16-bit LPCM at 32, 44.1, 48 kHz). Compressed audio support is optional.



HDMI – DDC Channel

- Allows source to interrogate the capabilities of the sink
- I2C signalling with 100kHz clock
- E-EDID data structure according to:
 - EIA/CEA-861B
 - VESA Enhanced EDID



HDMI – DDC Connection

HDMI – Audio Processor Repeater

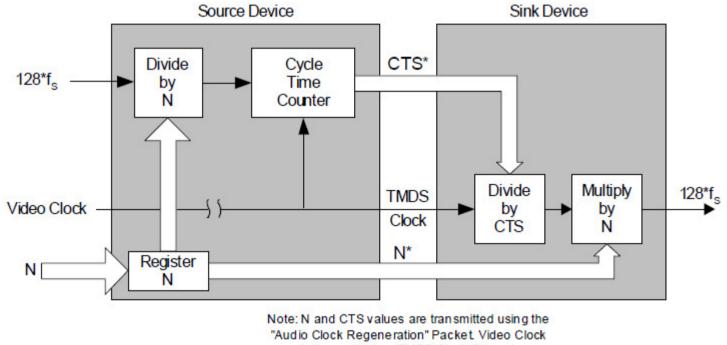
HDMI – CEC Channel

- Uses the industry standard AV link protocol, originally used in analogue TVs, VCRs etc
- Used for remote control functions 1 device to control everything
- One-wire bidirectional serial bus
- Mostly defined in HDMI Specification 1.2a
- Additions in HDMI 1.3a included a method for improved audio clock recovery for a compatible source and sink/repeater

Audio Clock Regeneration at an HDMI sink

- There is no audio sample clock transmitted in HDMI – the TDMS clock is *video* related
- HDMI does not in general specify how to do ACR
- ACR is usually carried out in the sink's HDMI receiver IC - an electrically very noisy environment
- If there is any jitter on the recovered audio clock and it is applied to the audio DACs in the sink, then this will affect the final audio quality
- Buffering of the audio data *cannot* fix this

Audio Clock Regeneration at an HDMI sink (2)


 HDMI does specify one possible way which works quite well when the sink has coherent audio and video clocks:

 Source transmits the ratio of TMDS clock to audio clock as a fraction with integers N and CTS where N = Numerator and CTS = Cycle Time Stamp

> 128 x Fs = Ftmds_clock x N/CTS and N is around 128 x Fs/1000

ACR architecture - source

is transmitted on TMDS Clock Chanel.

Figure 7-1 Audio Clock Regeneration model

ACR architecture – sink or repeater

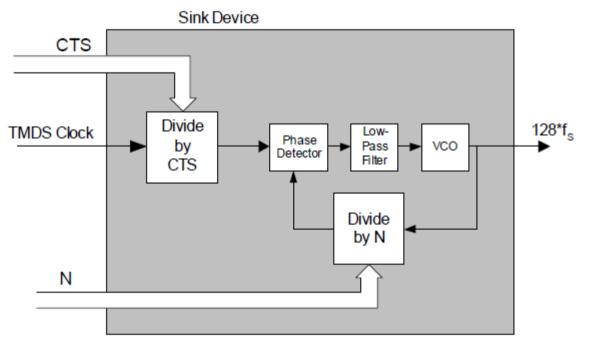
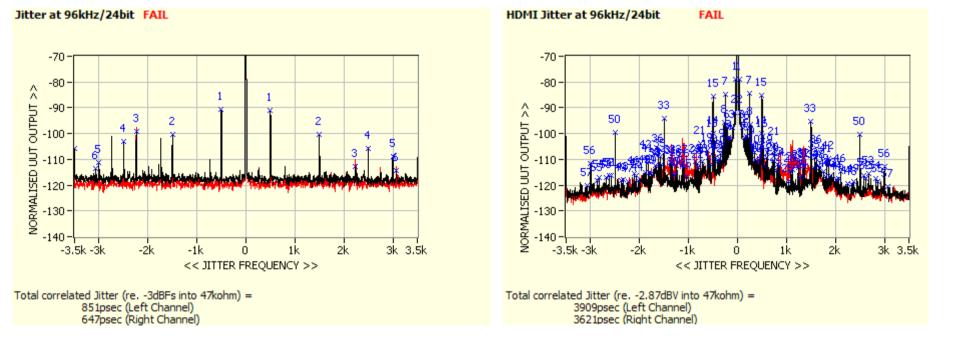


Figure 7-2 Optional Implementation: Audio Sink

ACR architecture – N and CTS at 48kHz

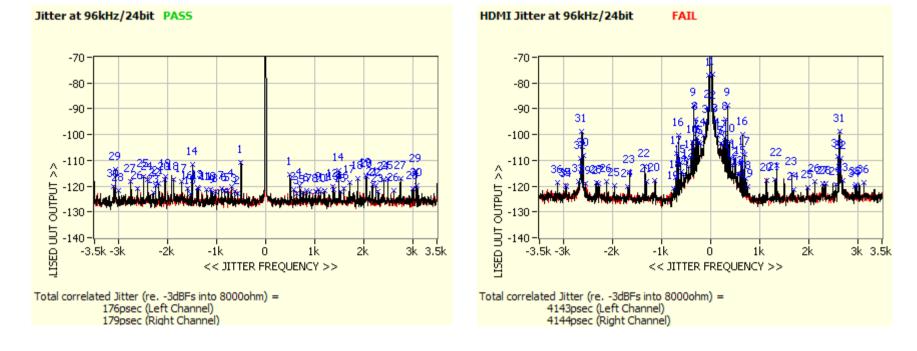
	48 kHz		96 kHz		192 kHz	
TMDS Clock (MHz)	N	стѕ	Ν	стѕ	N	стѕ
25.2 / 1.001	6864	28125	13728	28125	27456	28125
25.2	6144	25200	12288	25200	24576	25200
27	6144	27000	12288	27000	24576	27000
27 * 1.001	6144	27027	12288	27027	24576	27027
54	6144	54000	12288	54000	24576	54000
54 * 1.001	6144	54054	12288	54054	24576	54054
74.25 / 1.001	11648	140625	23296	140625	46592	140625
74.25	6144	74250	12288	74250	24576	74250
148.5 / 1.001	5824	140625	11648	140625	23296	140625
148.5	6144	148500	12288	148500	24576	148500
297 / 1.001	5824	281250	11648	281250	23296	281250
297	5120	247500	10240	247500	20480	247500
Other	6144	measured	12288	measured	24576	measured

Table 7-3 Recommended N and Expected CTS for 48kHz and Multiples

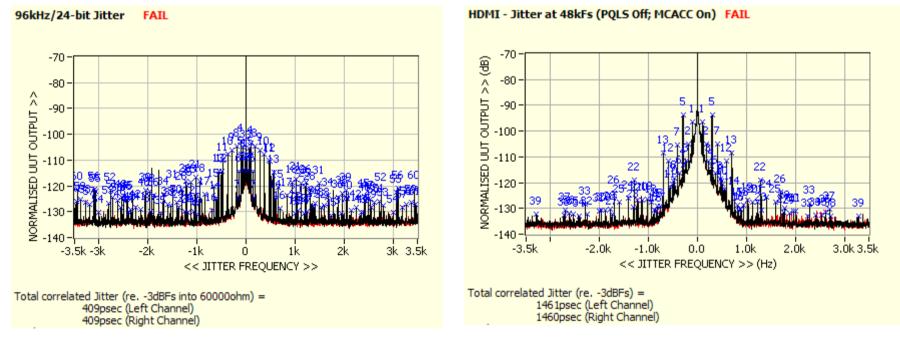


Using CEC for ARC (Audio Rate Control)

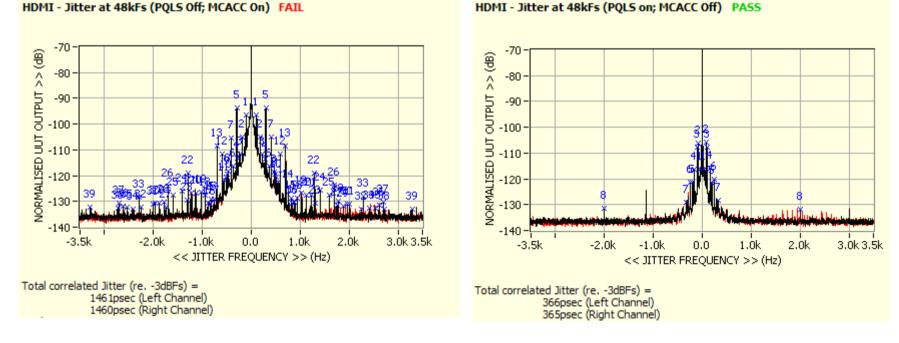
- Since HDMI 1.3 a CEC command called <set audio rate> allows a sink or repeater to instruct a *compatible* source slightly and continuously to vary its audio clock to track a stable master clock in the sink
- Has been used by several large CE vendors, e.g.
 - Pioneer PQLS
 - Sony HATS
 - Denon Link (uses CAT5 for control)
- BUT all proprietary need BD player /AVR from the
 AES 24th UK CONFERENCE June 2011 same brand cannot mix and match!


Examples of audio jitter over S/PDIF & HDMI

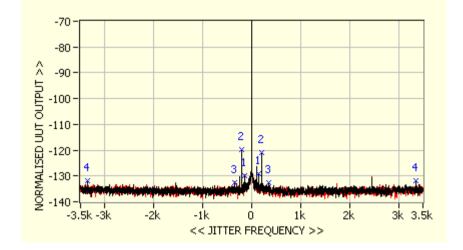
Denon AVR-3808A – Hi-Fi News Feb 2009

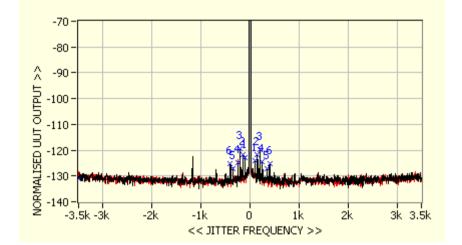

Examples of audio jitter over S/PDIF & HDMI (2)

Onkyo TX-NR906 - Hi-fi News Feb 2009


Examples of audio jitter over S/PDIF & HDMI (3)

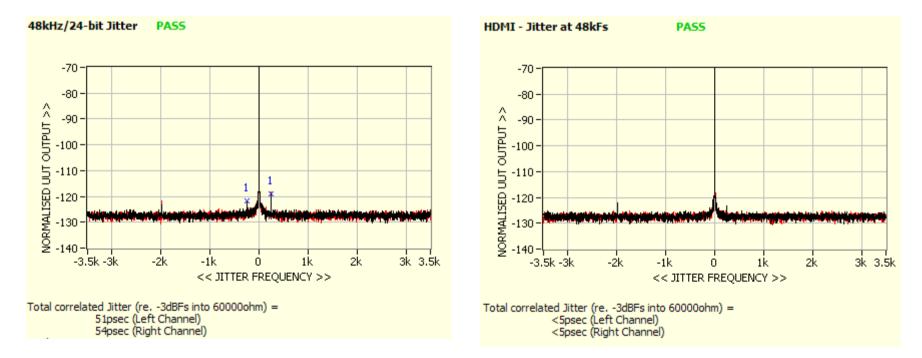
Pioneer SC-LX83 - Hi-fi News Sept 2010


Examples of audio jitter over HDMI with ARC



Pioneer SC-LX83 - Hi-fi News Sept 2010

And finally – jitter using analogue interface from DVD at 48 and 96 kHz (Arcam DV139)



Audio output at 48 kHz Total correlated jitter = 57ps Audio output at 96 kHz Total correlated jitter = 47ps

AES European Conference 2006

Examples of audio jitter over S/PDIF & HDMI (4)

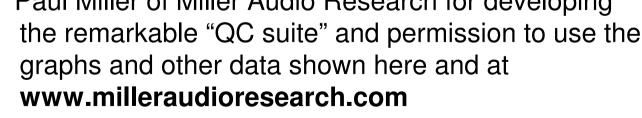
Arcam AVR600 - Hi-fi News July 2009

Audio Transport over HDMI - conclusions

- In CE space HDMI is here to stay. It supports all SD and HD audio formats to 8 channels and now includes an (SD) Audio Return Channel
- Many more channels than 8 with BD audio formats
- But....the audio clock is only loosely related to the dominant TMDS (video) clock.
- Most CE companies still implement ACR poorly

The End!

Thank you for your time and attention!


John Dawson johnd@arcam.co.uk

Acknowledgements

- Julian Dunn for the J-test and numerous AES papers on the nature of jitter
- Andrew Dutton, Peter Gaggs and others at Arcam for their enthusiasm and great hardware design skills
- Paul Miller of Miller Audio Research for developing the remarkable "QC suite" and permission to use the graphs and other data shown here and at www.milleraudioresearch.com

www.arcam.co.uk

