
AES 24th UK Conference – The Ins and Outs of Audio

PROGRAMMABLE CLOCK
GENERATION AND

SYNCHRONIZATION FOR
USB AUDIO SYSTEMS

Kendall Castor-Perry

Cypress Semiconductor

kvcp@cypress.com

AES 24th UK Conference – The Ins and Outs of Audio 2Kendall Castor-Perry

Tell ‘em Why (in reverse order)

Why ‘USB Audio Systems’?
USB is the most widespread consumer digital audio transport.

It is also being adopted by tablets and mobile media players, encouraging a
new ecosystem of audio accessories.

Why ‘Synchronization’?
The two ends of the link don’t exchange an audio clock, yet need to agree on

an exact sample rate.

Otherwise the DAC will continually run out of, or lose, audio samples.

Why ‘Clock Generation’?
Well, a clean audio master clock has to be produced somehow.

This isn’t trivial, if that clock frequency could vary over some range.

Why ‘Programmable’?
There are several different ways of transferring audio across a USB link.

Products often need other customizable end-points and features.

Existing ASSPs aren’t flexible enough, and ASIC development is too
expensive.

AES 24th UK Conference – The Ins and Outs of Audio 3Kendall Castor-Perry

What’s a Millisecond Between Friends?

The host transmits a SOF (Start of Frame) packet every ms.

Or, more precisely:

The host transmits a SOF (Start of Frame) packet every
12000 counts of its local USB clock (12MHz ± 0.2%).

This interval is the host’s definition of 1 ms.

If the current audio sample rate is Fs, by default the host
sends one data packet containing Fs/1000 samples in each
frame.

If Fs is not an integer multiple of 1000Hz (e.g. audio at
44.1ksps) a finite, repeated sequence of packets with a mean
content of Fs/1000 samples is sent.

For 44.1ksps, 9 frames with 44 sample packet and one frame
with 45 sample packet, mean = 44.1 samples per frame.

AES 24th UK Conference – The Ins and Outs of Audio 4Kendall Castor-Perry

Device-mode audio replay

We’re covering the most challenging case here, where the
USB device is replaying the audio sent to it by the USB host.

If the equipment doing the replaying is also the host on the
link, everything is much easier because the host always
knows how much data to suck out of the device so that it
doesn’t get ahead or behind.

This approach is hardly ever used; the host should generally
be the most powerful, application-intensive thing in the
system, and it might be talking to many different devices.

It crops up in some specialized mobile player replay
applications, but it’s surprisingly difficult and in some cases
actually deprecated by the player vendor.

“We do these things because they are hard...”

AES 24th UK Conference – The Ins and Outs of Audio 5Kendall Castor-Perry

Synchronization modes without Feedback

In modes without any feedback, the device is left to its own...
devices ☺ All the device has is the data coming from the
host, and the timing of the underlying frame structure.

In synchronous mode, the device synchronizes its audio i/o
timing with the host by using the detection of the SOF packet
as a ‘tick’ that defines the host’s millisecond.

In adaptive mode, the device measures the rate of sample
arrivals, and adjusts its audio i/o timing so that it matches the
known sample rate of the material.

In adaptive synchronous mode, the usual synchronous mode
operation is augmented by a fine-tuning loop that detects
slippage of the data rate against the host timing.

The host doesn’t need to know which of these philosophies
the replaying devices is adopting.

AES 24th UK Conference – The Ins and Outs of Audio 6Kendall Castor-Perry

Synchronous Mode

Audio in and out packets can appear in any order in the frame (doesn’t usually change dynamically)

Audio in and out sample rates don’t need to be the same (but nearly always are)

estimate USB

frame rate F’f

ADC

DAC

create audio clocks

from local osc

 Fs←KsyncF’f, Fmast=nFs

FIFO buffer

FIFO buffer

local

osc FLO

buffer pointers not monitored! audio out

audio in
(optional)

AES 24th UK Conference – The Ins and Outs of Audio 7Kendall Castor-Perry

Adaptive Mode

estimate

sample arrival

rate F’s

ADC

DAC

create audio clocks

from local osc

Fs←F’s, Fmast=nFs

FIFO buffer

FIFO buffer

local

osc FLO

buffer pointers are
one way of tracking
F’s estimate error

audio in
(optional)

audio out

AES 24th UK Conference – The Ins and Outs of Audio 8Kendall Castor-Perry

Adaptive Synchronous Mode

estimate USB

frame rate F’f

ADC

DAC

create audio clocks

from local osc

 Fs←KsyncF’f, Fmast=nFs

FIFO buffer

FIFO buffer

local

osc FLO

buffer pointers are
monitored and used
to fine-tune F’f

estimate from SOF
timing audio out

audio in
(optional)

AES 24th UK Conference – The Ins and Outs of Audio 9Kendall Castor-Perry

Synchronization modes with Feedback

In these modes, indirect timing information is exchanged
between device and host over the USB bus. This allows the
audio clocks to be independent of the interface clockwork.

Data flow is managed so it can be reproduced by the device’s
own local clock, without losing or doubling up on samples.

One way of doing this is for a USB endpoint in the device to
carry information about how fast the ends are gaining or
losing; asynchronous with explicit feedback. That’s a bit
inconvenient if you haven’t got a spare endpoint, or enough
bus bandwidth for the extra traffic.

The other way, asynchronous with implicit feedback, is a neat
“hiding in plain sight” method that hijacks normal link
functionality to provide a hidden feedback path.

The host needs to know which of these schemes to follow.
Not all hosts support asynchronous modes.

AES 24th UK Conference – The Ins and Outs of Audio 10Kendall Castor-Perry

Asynchronous Explicit Mode

ADC

DAC

Dedicated audio

clocks unrelated

to USB timing

FIFO buffer

FIFO buffer

device makes buffer pointer mismatch
available to host in a feedback endpoint

...and USB frame timing is
ignored for audio purposes

audio out

audio in
(optional)

AES 24th UK Conference – The Ins and Outs of Audio 11Kendall Castor-Perry

Asynchronous Implicit Mode

ADC

DAC

Dedicated audio

clocks unrelated

to USB timing

FIFO buffer

FIFO buffer

(1) asynchronous operation makes the
transmit FIFO’s pointers diverge

audio out

audio in
(required, but

can be null data)(2) modulate

transmit audio

packet size

(3) host shapes its return traffic to
match the uplink traffic – and therefore
the device’s audio clock. No endpoint

needed

AES 24th UK Conference – The Ins and Outs of Audio 12Kendall Castor-Perry

Jitter, Phase Noise and converter SNR

Everyone looking at this knows that if the audio clocking isn’t
perfectly ‘clean’, audio quality will suffer in some way.

The cleanest clocks come from carefully constructed crystal
oscillators. These won’t be related to the clocking on the
interface and so modes with feedback (i.e. asynchronous)
must be used for correct transfer between host and device.

Good oscillators are expensive and Asynchronous modes are
sometimes unsupported in the host hardware.

Modes without feedback are prevalent in consumer-grade
audio. They require you to somehow synthesize a variable
frequency signal of arbitrary frequency resolution.

This synthesis process will add some unwanted phase noise
and spurious frequencies to the master clock that goes to the
converters. Consumer-grade delta-sigma converters can be
particularly sensitive to this.

AES 24th UK Conference – The Ins and Outs of Audio 13Kendall Castor-Perry

Take two Delta-Sigmas into the shower?

The implementation described here addresses the sensitivity
of the delta-sigma loop in a consumer DAC with... another
delta-sigma loop.

The synchronization mode chosen for this project was
Synchronous. It’s unfashionable, largely due to bad
experiences in the early days of USB audio.

The fine resolution needed for the recovered audio clocking is
achieved with a delta-sigma synthesizer.

This uses noise-shaping around a frequency synthesis system
of moderate resolution to suppress error components,
completely analogous to the use of such a loop in an audio
DAC.

In an ideal world, all the discrete frequency error is taken
away, and all that’s left is noise (phase noise, in this case),
and hopefully not much of that.

AES 24th UK Conference – The Ins and Outs of Audio 14Kendall Castor-Perry

Don’t panic, it’s all in the text of the paper!

We first divide down our local oscillator by a carefully defined
and dynamic constant which has a fractional part.

The delta-sigma loop turns the fractional part into a sequence
applied to the divide-control input of an L~L+1 prescaler.

Clock

Interface

Prescaler

/N

/N + 1

Delta Sigma

Modulator

Ref frequency

counter

Integrate

shift and hold

Verilog / UDB

24 MHz

Clock Domain 1:

24 MHz XTAL clock
global clock routing

asynchronous to system clock

Clock Domain 2 – sync to Fs:

Audio Master Clock

at 256x Fs
256x 48 kHz = 12.288 MHz

Frequency estimation and
reference generation

PSoC3 System PLL to create
low jitter audio master clock

USB 1 ms
token pulses

24 MHz

USB reference clk

Ref clock

~ 1024 kHz

PSoC3 System PLL
Generate audio

and system clocks

I2S
interface

I2S out

Audio Master
256x Fs

I2S clock

64x Fs

When the sums are done
right, this process is
exact, and no feedback is
needed, so the loop can
be very fast.

The prescaler output is
used as the reference for
a conventional PLL
multiplier that provides a
final rational step-up.

AES 24th UK Conference – The Ins and Outs of Audio 15Kendall Castor-Perry

A Fractional Input Noise-shaper

H(z)

add

all

inputs

1-bit quantizer

out=1, in>=thresh

out=0, in<thresh

invert

(times -1)

dual modulus

prescaler

fractional input

0 < K < 1

for divisor = L+K

local crystal clock

(not audio)

divided output

s/h

divide by L if modulus input low

divide by L+1 if modulus input hi

AES 24th UK Conference – The Ins and Outs of Audio 16Kendall Castor-Perry

Noise-shaper H(z) transfer functions

2nd order

force NTF = (1-z-1)2

gives H(z) =

(2z-1-z-2) / (1-2z-1+z-2)

+

z-1

z-1

+

-1

1st order (used in initial system)

force NTF = 1-z-1

gives H(z) = z-1 / (1-z-1)

+

z-1

AES 24th UK Conference – The Ins and Outs of Audio 17Kendall Castor-Perry

Implementation

The entire synthesizer is implemented in the programmable
digital hardware of an off-the-shelf PSoC3 Programmable
System-on-Chip.

No CPU activity is needed except to change settings if a
different master clock frequency is required.

The local oscillator is a standard 24MHz crystal which is also
used to clock the USB bus interface.

The adjustable parameters in the design are calculated with a
simple spreadsheet. Both standard sample-rate trees are
supported, and can be derived from many other standard local
oscillator crystal values (25MHz, 26MHz, 27MHz...).

If there’s no synchronization input, the synthesizer just free-
runs at the desired frequency.

The synthesizer locks in a single frame; buffer length is
minimal (768 bytes for 48k/16b stereo in and out, ~2ms).

AES 24th UK Conference – The Ins and Outs of Audio 18Kendall Castor-Perry

Further Improvements

Magnitude of jitter, around 600ps pk-pk, is mainly due to the
PSoC3 system PLL, which wasn’t designed specifically for
audio. But it is nearly all random phase noise.

Tonal behaviour can be seen in simulation with constant input
from the SOF measurement. We’ve yet to try higher order
loops or dither, because what we already have is deemed
good enough by current customers.

Adaptive Synchronous mode can be added trivially by
offsetting the modulator’s dither input. ‘Regular’ adaptive
mode would be possible with a hardware redesign.
Asynchronous modes should be straightforward (but just as
messy as with any other solution).

‘Preferred value’ asynchronous mode allows operation with
one direct crystal clock, which is also used as the local
oscillator to generate the other clock tree.

AES 24th UK Conference – The Ins and Outs of Audio 19Kendall Castor-Perry

Sneaky Commercial Pitch

The USB Audio System is a ‘poster child’ for the versatility,
ease-of-use and short design cycle time of the PSoC3
Programmable System-on-Chip.

Accessible USB FS Device interface lets you get at the SOF
packet timings and customize your endpoints.

“Universal Digital Blocks” have CPLD elements for custom
combinatorial logic. plus a datapath array for hardware
support of sequential ALU-driven stream processing.

Flexible clock tree design allows multiple independent clock
domains for different on-chip processes.

Digital Filter Block gives up to 67M 24x24 MAC/sec for
additional audio signal processing not discussed here.

Substantial analogue hardware resources (opamps,
comparators, ADC, DAC) support lots of system management
and auxiliary product features. Tasty!

