Pacific Northwest Audio Engineering Society Presentation

Evolution Of DIY Loudspeaker Design

Dana Olson, Terry Olson

Introduction

AES Member – New Committee Member DIY contest selected as Oct Topic Blind contest, Ugly speakers can win!

Contents

- DIY Contest History and Rules Terry Olson
- Design Goals / Requirements
- Tweeter Selection
- Baffle Design
- Midrange Selection
- Woofer Selection
- Crossover Design
 - Break
- Enough Talking, Let's Hear These Monsters

DIY Contest: 2014 Rene' with Terry Olson

Contest Rules

- The speakers will be driven by the system the club supplies.
- We intend that judging will be totally blind.
- Judges are seated, and all hear nine selections on each speaker.
- Original Design Categories:
- One way ----under \$75/over \$75
- Two way ----under \$200/over \$200
- Three way -- under \$300/over \$300
- Unlimited ---- no limit

Contest History

- Previous years winner was three way designs with large woofers
- A lot of loose talk about 18" woofers around the club
- Several Open Baffle designs coming
- The room is large and the speakers will be away from the walls.

Entries Waiting To Be Tested

Design Goals / Requirements

- Directivity Possibilities ?
 - Omni
 - Dipole
 - Wide Forward
 - Narrow Forward
- Constant Directivity With Frequency (Gedes)
- Point Source / Line Source ?
- Fixed Source Position

Design Goals / Requirements

- No Monkey Coffins (Peter Aczel)
 - No resonances / energy storage
- Specs like a piece of wire
 - Flat frequency Response
 - Low distortion / non linearity

Tweeter Criterion

- Near Full Range: Cover frequency range ear locates sound with one driver (Toole & Bose)
- Piston Behavior
- Low Distortion Driver (Linkwitz)

influence perceptions of the direction of a sound source and the apparent size of source. In some circumstances, reflections may be audible as separate "images sound source.

- Dome Acts As Piston Full Range
- Long Throw
- Low Cutoff Frequency
- Low Distortion

NSW1-205-8A

1 inch Extended Range Loudspeaker

- High Output Sensitivity
- Ultra Compact Design
- No Stray Magnetic Fields

Nominal Diameter	1 inch (25 mm) R25.0
Nominal Impedance (Z)	8 ohms
Sensitivity, 1W/1m (E)	78 dB @ 1 kHz
Power Capacity, RMS (Pe)	5 W
Power Capacity, Peak	20 W
Frequency Range (-10dB)	220 Hz - 1.5 kHz
Minimum Impedance	7 ohms
Voice Coil Diameter	20.5 mm
Voice Coil Winding Length (h)	3 mm
Voice Coil Number of Layers (n)	2
Voice Coil Former Material	Aluminum
Voice Coil Wire Composition	CCAW
Magnetic Material	Neodymium radial
Stray Flux Shielding	Inherent
Magnetic Gap Depth (He)	6 mm
Cone Material	Titanium
Surround Material	Foam
Polarity, Outward Motion	Positive voltage on (+) ten
Net Weight	52.3 g
Maximum Excursion	6 mm peak to peak
Thiele / Small Parameters	
Resonant Frequency (Fo) - Fs	220 Hertz

Resonant Frequency (Fo) - Fs 220 Hertz
/oice Coil DC Resistance - Re 6.3 ohms
Fotal Q - Qts
Vechanical Q - Qms
Electrical Q - Qes
Equivalent Volume of Air - Vas 0.04 L
Radiating Piston Area - Sd 5.31 cm ²
Kmax

Electrical / Mechanical Parameters

Flux Density x Length - BL	1.9 Tesla-meters
Compliance - Cms	.1155 μm/N
Total Mass - Mms	0.5 grams

Frequency Response (1W, 1m)

Baffle Diffraction Effects Olson 1969 1" Driver On Various Baffles

Commercial Designs

• IRS, IRS Beta, RS4

Baffle Prototypes

Baffle Prototypes

Baffle Design:

Jeff Bagby Excel

Locate Drivers On Baffle To Minimize Ripple

Centered

Jeff Bagby Excel

Locate Drivers On Baffle To Minimize Ripple

Offset

Vibration Reduction

- Back to Back Drivers Active Bucking
- Anvil Passive Bucking

1" Cougar Driver Mounted On Plywood

Cougar Driver Mounted on rectangular plywood panel, Bucking Driver Plastic Pipe

Cougar Driver Mounted on rectangular plywood panel, Steel Pipe Enclosure

Cougar #3 Finished enclosure close mic

Midrange Selection

- Buy
- Very carefully test
- Return the losers*

* Unless the loser is so beautiful you can't and it fits somewhere in the house or garage or car trunk or at a friends house.

Midrange Selection: Echoic Chamber

Midrange Selection

Driver Testing:

Measuring what's not in published specs

- Perform Linkwitz linear and non-linear distortion tests
- Go read the website for a clear understanding of what is about to happen here. <u>http://www.linkwitzlab.com/mid_dist.htm</u>
- On a reference woofer and selection of other candidates for design.
- 800 Hz Tone burst tests for linear energy storage related distortion.
- Steady two tone tests (135Hz and 165Hz) for Intermodulation distortion resulting from nonlinearities in the driver. Record the level of adjacent harmonic products in a table for comparison (table 1).

Tone Burst test in Arta software

Signal Generation and Recording		×		
Continuous Generator	Signal recording	Trigger		
C Continuous Sine	Input channel	Trigger channel Right 💌		
Set F = 1000.00Hz	Length (samples) 128k	Trigger slope Plus		
Transient Generator	Sampling rate (Hz) 96000 💌	Trigger value / full scale 0.007		
O Pulse Width 1	Time constant: 1365.33 ms			
Sine Burst Blackman wir	Number of averages 1	Predelay (samples) 195		
Freq (Hz) 1000	Invert Phase of input channel 🔲	Time waiting trigger (s)		
Sine periods 5	Wait for trigger 🔽	Close after recording 🔽		
Level (dB FS) -6				
Repetition 262144 💌	L I -70 I -50 R -50 I -60 I	i -30 i -10 d8 -40 i -20 i d8		
Invert output signal 🥅				
Trigger on right channel 🗌	Generate Link 🔽 <u>R</u> eco	ord <u>D</u> efault OK		

Tone Burst Waveform

Tone Burst Test analysis

Two Tone Intermodulation Test 135 Hz + 165 Hz

Two Tone Intermodulation Test

Driver Testing: Results

Driver	Diameter	Two Tone (dB) Closest, Highest Harmonic	T Decay -30dB, Current Drive	T Decay -30 dB Voltage Drive
RadioShack	6	-38		
Tang Band	6.5	-45 *		
ScanSpeak Illuminator	7	-42, -42	1.5 ms	0.8 ms
Seas W18EX001	7	-50,		1.2 ms
Dayton Ref	7	-48	0.8 ms	
Seas W22EX	8	-50, -42	1.5 ms	
Dayton Ref	8	-48	1.4 ms	
HiVi M8N	8	-38, -38	1.1 ms	

Midrange Selection:

- Low Frequency Cutoff: Box "Tuning" Thiel Small
- Box Resonances, Stuffing
- Cabinet Panel Modes, Bracing

Measuring TS parameters Dayton RS180-8 7"

TS Box Response WINISD:
Box Design: Midrange: Helmholtz Resonance

Boxnotes - default			🖌 🖷 👻 Page 🛩 Safet
Project Cutting-list Port Flanges	-1 Graphing Opticins Units P	rint Help	Guo
Box Dimensions (mm external) an Depth 181 H Width 181 H Also Dimension calculator - doubl Double Thickness Front Ports (mm) Internal Diameter 86 Wall Thickness 2 Driver Location (mm) Box top to driver centre Offset from vertical centreline Box front to mid-depth of cone	d Calculator leight 181 nternal Volume (litres) 6 e click unknown field to update Panel Thickness 19 Length 823 No. of ports 0 200 Size 12 inch 1 36 Min	 Port resonance not applicable Unable to calculate Driver to bottom wall Box top to bottom resonance 1201 hz Driver to top wall resonance 950 hz Driver to rear wall resonance 1410 hz Box front to back resonance 1387 hz Driver to side wall-1 resonance 2338 hz Box side to side resonance 1201 hz Driver to side wall-2 resonance 2472 hz Bracing = 1 litres Driver = 2.5 litres Total = 3.5 litres Working Vol 2.4 litres Tune 0hz 	r enclosure.

100 200 300 400 500 500 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

LO IDERION RESONANCE COMIT

Box Design: Midrange: Effect of stuffing

Box Design: Panel Resonances

- >> rectangular_plate_fea
- rectangular_plate_fea.m ver 1.9 February 26, 2013
- by Tom Irvine Email: tom@vibrationdata.com
- ٠
- This script calculates the natural frequencies and mode shapes of a flat, thin, rectangular plate.
- •
- Enter the length (inch) along the x-axis 8
- Enter the width (inch) along the y-axis 8
- Enter the number of nodes along the x-axis 10
- Enter the number of nodes along the y-axis 10
- Unconstrained model statistics
- •
- nodes=100 elements=81 degrees-of-freedom=300

Enter plate type:

1=homogeneous 2=honeycomb-sandwich1Enter thickness (inch).75

Select material

1=aluminum 2=steel 3=G10 4=wood 5=other 4

Enter uniform nonstructural mass?

1=yes 2=no

2

```
structural mass = 1.176 lbm
nonstructural mass = 0 lbm
total mass = 1.176 lbm
volume = 48 in^3
total mass density = 0.0245 lbm/in^3
```

Select boundary Condition 1=all free 2=corners pinned 3=corners fixed 4=other 4

Select BC for bottom edge 1=free 2=simply supported 3=fixed 3

Select BC for right edge 1=free 2=simply supported 3=fixed 3

Select BC for top edge 1=free 2=simply supported 3=fixed 3

Select BC for left edge 1=free 2=simply supported 3=fixed 3

Midrange Box: Panel Resonances

Eigenvalue calculation time Elapsed time is 5.55121 seconds.

		Effect	ive	
	Natural	Participation	Modal Mass	Mass
Mode	Freq(Hz	z) Factor	(lbm)	Percent
1	581.74	0.03857	0.57425	48.831
2	1183.3	0.00000	0.00000	0.000
3	1183.3	0.00001	0.00000	0.000
4	1716.6	0.00000	0.00000	0.000
5	2123.7	0.00000	0.00000	0.000
6	2136.6	0.02359	0.21480	18.266
7	2602.7	0.00000	0.00000	0.000
8	2602.7	0.00000	0.00000	0.000
9	3412.2	0.00003	0.00000	0.000
10	3412.2	0.00000	0.00000	0.000
11	3413.1	0.00561	0.01216	1.034

Panel Flex Mode Shapes

Box Design: Howards Fancy German Saw

Box Design: Midrange Plywood Cube

Response In Box

Midrange Response: Weight In Box

My 7" Midrange Rolls off at 90 Hz

- 1. The other guys are bringing 18" woofers
- 2. I Want 30 Hz bass.
- 3. Need to move a lot of air with a box I can lift.

Create Woofer Selection Spread Sheet Sorted by figure of merit

liter	Hz	Hz		in	in	Hz	ohm	mΗ	liter			cm3	mm	liter	Hz	cm3	cm3/liter
	Resonance	Half Pwr												Recomn	nendec	Sd*Xmax	Vcone/Vbox
Vbox	Fbox	F3dB	Name	Size	Dcone	Fs	Re	Le	Vas	Qes	Qms	Sd	Xmax	Vb	Fb	Vcone	Box Eff
256.0	25.2	25.2	Rythmik Servo 15	15	12.6	15.4	3	2.50	430.0	0.52	5.2	809	18.0	100	18	1456.2	5.7
309.8	27.9	27.9	Dayton IB385-8	15	12.9	20.8	5.2	3.08	248.9	0.63	8.92	845	14.3	850	15	1208.4	3.9
134.1	31.9	31.9	Dayton UM15-22	15	12.7	19.5	3.4	1.31	224.1	0.59	2.4	814.6	19.0	3.98	33	1547.7	11.5
123.3	32.6	32.6	Dayton RSS390-HF	15	12.9	18	3.3	1.00	281.6	0.49	3.1	840	14.0	280	16	1176.0	9.5
137.3	34.6	34.6	Dayton DCS380-4	15	12.9	20	3.1	2.30	274.7	0.5	4	845	8.5	375	18	718.3	5.2
43.0	40.2	40.2	ScanSpeak 30w/4885t-12	12	10	17	4	0.83	197.0	0.34	5.01	466	12.5	70.25	27	582.5	13.5
35.0	42.0	42.0	Dayton 12" Titanic MKIII	12	10	24.9	3.1	2.79	64.3	0.49	7.03	510	18.7	100	20	953.7	27.3
97.9	42.1	42.1	Dayton 15" Titanic MKIII	15	12.9	26.2	3.8	3.11	154.6	0.52	6.75	840	20.5	250	20	1722.0	17.6
23.0	43.4	43.4	Dayton RSS210-HF	6.5	5.8	28	3.3	0.68	32.3	0.6	3.08	170	9.0	56	21	153.0	6.6
28.2	43.7	43.7	Dayton RSS265-4 Reference HF	10	8.4	25.6	3.5	0.96	54.0	0.53	3.06	356.3	12.3	56	22	438.2	15.5
41.1	44.2	44.2	Eminence LAB12	12	10.1	22	4.29	1.49	124.5	0.39	13.32	520	13.0	100	22	676.0	16.4
40.6	45.7	45.7	Seas L26RFX/P	10	8.1	20	6.3	1.83	171.0	0.39	2.15	330	14.0			462.0	11.4
19.1	46.8	46.8	HIVi SP10	10	7.8	34	3.4	1.35	17.0	0.65	4.83	305	15.5	28	25	472.8	24.8
69.4	47.3	47.4	Aurum Cantus AC300/75C2C	12	9.9	22	7	1.31	251.9	0.42	2.16	500	8.5	52.921	50	425.0	6.1
33.8	45.2	45.2	Dayton RSS315-HF 12"	12	10.1	24.2	3.1	0.96	84.1	0.45	2.83	514.7	14.3	100	20	736.0	21.8
37.4	48.0	48.0	Dayton RSS390-HO	15	12.9	24.2	3.3	1.83	109.5	0.42	4.48	840	12.0	85	24	1008.0	27.0
16.9	50.0	50.1	Dayton RSS315-HO	12	10	26	3.4	1.75	45.9	0.44	4	510	12.3	56	22	627.3	37.0
17.3	54.0	54.0	Seas L26ROY 10"	10	8.5	22	3.1	0.53	87.0	0.33	4.14	363	14.0			508.2	29.4
10.6	56.6	56.7	Dayton TS280D-4 10"	10	8.2	29.6	3.3	3.09	28.3	0.43	5.52	343	18.0	40	25	617.4	58.1
32.6	57.1	57.2	Seas W22EX001 8" meas	8	6.6	33.6	6.025	0.76	61.7	0.5381	2.879	220	5.0	24	63.25	110.0	3.4
24.3	59.6	59.6	Eminence Lab 15 - 85L	15	12.8	26	4.6	3.23	103.6	0.35	5.36	824	11.8	85	21	972.3	40.0
27.5	61.2	61.2	Eminence Lab 15	15	12.8	28	4.9	3.23	103.6	0.37	5.36	824	11.8	56	21	972.3	35.4
15.8	61.3	61.3	Dayton RS225-8 8"	8	6.6	29.61	6.342	0.83	52.0	0.4962	1.4	220	7.0	23.2	55.13	154.0	9.8
34.3	62.0	62.0	HiVi M8N Measured-8"	8	6.5	47.1	6.265	1.34	25.1	0.662	6.64	214	5.8	28	34	124.1	3.6
6.9	62.6	62.6	Dayton RSS265-HO	10	8.3	30.3	3.4	1.90	22.6	0.4	4.48	345	12.3	28	24	424.4	61.3
56.4	63.2	63.2	TC-1808"	18	15.4	27.9	3.01	2.31	232.6	0.35	6.9	1195	6.4	123.64	32.67	764.5	13.6
81.7	65.3	65.3	Eminence 4015LF	15	12.9	42	5.04	1.49	116.0	0.54	6.73	845	9.0	200	32	760.5	9.3
63.2	69.5	69.6	Eminence 4018LF	18	15.4	32	6.19	4.78	235.2	0.36	10.38	1195	7.9	150	35	944.1	14.9
11.0	71.9	71.9	SB17NRXC35-8 6.5" woof	6.5	4.8	32	5.7	0.15	44.5	0.36	5	118	5.5			64.9	5.9
10.8	81.7	81.7	MISCO 6102-4 6.5" Poly cone	6.5	5.8	28.6	3.4	0.40	77.1	0.27	7.28	170	3.5			59.5	5.5
5.8	87.9	87.9	Seas W18EX-001 E0017 meas	7	5	37.01	5.53	0.72	27.1	0.364	2.42	126	5.0			63.0	10.8
5.3	89.0	89.0	Dayton RS180-8 7" meas	7	5	44.4	6.126	0.77	16.1	0.4997	1.578	124.5	6.0			74.7	14.0

Woofer Spec: Suggested Box Tuning

• ScanSpeak Discovery Line 30W/4558T 12" Subwoofer - 4 ohm

- Aluminum Cone, Black Anodized
- Fiberglass/Paper Sandwich Dust Cap, Black Coated

• 56 mm peak excursion – 25mm linear (X-max)

- Aluminum Short Circuiting Ring
- Aluminum Pole Piece Extension to reduce distortion and power compression
- Titanium Voice coil former
- Vented cone / dustcap
- Nomex spider
- Low damping rubber surround
- Litz wire woven into the spider
- Suggested box alignments:
 - One cubic foot sealed for use in autosound systems.
 - One cubic foot sealed with a plate amp and boost for use in home systems. With our KG5230 the F3 would be 38Hz.
 - The 30W/4558T and the 30W/0-00 passive radiator in a 2.5 cubic foot box should be 3dB down at 30Hz.

• For a vented box of 2.5 cubic feet, 3" vent by 11" long, your F3 is 27Hz.

💾 💽 Boxnotes - default

Depth Ducid

Han

2

Project Cutting list Port Flanges-1 Graphing Options Units Print Help

Length

No. of ports

400

115 214

11

500

600

700

Width 1' 5 3/4 Internal Volume (cu.ft) 2.48		J I 0 172	Jan Stranger (1 0 0/ 4
Also Dimension calculator - double click unknown field to undate	Width	1'53/4	Internal Volume (cu.ft)	2.48
	Also Dime	nsion calculator	 double click unknown field to 	update

Height

Double Thickness Front 🔽 Panel Thickness 3/4

Ports (inches)—

Internal Diameter	3	
Wall Thickness	1/8	

-Driver Location (inches)-

100

Box top to driver centre	7 7/8	Size	10 inch
Offset from vertical centreline	1/16	No.	1
Box front to mid-depth of cone	1 3/16		Min

300

200

Click to hide

Ports = .04 cu.ft Bracing = .1 cu.ft Driver = .05 cu.ft Total = .2 cu.ft

Working Vol 2.28 cu.ft Tune 25.1hz

800

300

Front

Woofer Box: Panel Resonances

Effective

	Natural I	Participation	Modal Mass	Mass
Mode	Freq(Hz	z) Factor	(lbm)	Percent
1	372.73	0.05315	1.09041	49.673
2	478.85	0.00000	0.00000	0.000
3	671.19	0.02122	0.17383	7.919
4	949.43	0.00001	0.00000	0.000
5	970.84	0.00001	0.00000	0.000
6	1066.3	0.00000	0.00000	0.000
7	1234.1	0.00000	0.00000	0.000
8	1310.2	0.01401	0.07577	3.452
9	1480.8	0.00000	0.00000	0.000
10	1751.6	0.00002	0.00000	0.000
11	1809.3	0.00000	0.00000	0.000
12	1872.7	0.02374	0.21763	9.914
13	1957.5	0.00000	0.00000	0.000
14	2105.1	0.00773	0.02308	1.051
15	2220.7	0.00000	0.00000	0.000
16	2273.8	0.01085	0.04547	2.071

Woofer Box

Cube Shape Maximize Frequency of first Helmholtz Resonance Maximize Frequency of first Panel Resonance

Crossover Design Goals

- What matters? You don't want to hear it!
 - Notching happens with offset / angle
- Modeling
- Simulation
- Listening to the simulation

Crossover Audibility Research

- Modeling
 - Software (Matlab or Octave)
 - AES Convention Paper 5908: A Virtual Loudspeaker Model to Enable Real-Time Listening Tests in Examining the Audibility of High-Order Crossover Networks. Cochenour & Rich

Crossover

Audible Defect

3,500 Hz 4th order Linkwitz, 417 us delay, 5.6" offset.

+ Z- Insert Text Axes Grid Autoscale Combine Response Crossover and delay	
Combine Response Crossover and delay	
10 0 -10	U
0 -10	J
0 -10	U F
0 -10	u
0 -10	un
-10	
-10	
-10	
-10	
-10	
-20	
-30	
-40	››·····················
50	

Crossover

Inaudible Defect?

800 Hz 4th order 200 us (2.6") offset.

t	Help				_			
		.+.		N .				
F	2-	Ŧ	Insert lext	Axes	Grid Autos	cale		
				Combine B	esponse Cross	over and dela	v	
0.	5 —						<i></i>	
		: :						
		: :		: : : : : : : :	: : : : : : : :	: : : : : : : : :		
	۰L.,			: : : : : : : : :	: : : : : : : : :			
	۲Ľ	: :	: : : : : : : :	: : : : : : : :	: : : : : : : : :			
						·	. /	
						: : \ : : : :	. /	
		: :		: : : : : : : : :	: : : : : : : :	: : :	· · · · · · · · · · · · · · · · · · ·	
						÷ ÷ •		
		: :		: : : : : : : :	: : : : : : : :	: : : : : : : : :		
0.5	5							
		: :	:::::::	: : : : : : : :	: : : : : : : :			
		1				· · · · · · · · · · · · · · · · · · ·		
		: :				: : : : : :		
						· · · · · · · · · · · · · · · · · · ·		
-	⊥⊢…	· • • • •	••••••	• • • • • • • • • • • • • • • • • • • •		····		••••••••••••
		: :		: : : : : : : :	: : : : : : : :	: : : : : : :		
						÷ ÷ ÷ ÷ • • • • • •		
		: :		: : : : : : : :	: : : : : : : :	::::::::		
						· · · · · · · · · · / · /		
		: :		: : : : : : : :	: : : : : : : :	: : : : : : : : : : : : : : : : : : : :		
. .	-					· · · · · · · · · · · · · · · · · · ·		
-1.:	>							
		: :						
		1						
		: :						
		1						
	- L	: :				: : : : : : : : : : : : : : : : : : : :		
- 2			1 1 0	7 7	1 1 0	1-10	7 - 14	1

Crossover

Fourth Order Linkwitz, zero offset summed high pass and low pass response.

Impulse Response

Crossover: Design Decisions

- High order cross over minimize driver overlap
- Perfect Summing Linkwitz 4th order
- Offset Induced Notch Low Frequency -> long wavelength -> phase shift

Crossover Implementation: Modeling and Design

- Active
 - DBX rack mount pro gear, (easiest, intuitive knobs, prototyping)
 - miniDsp, others (software configurable, most flexible)
- Passive
 - Coils, Caps and Mechanical (difficult to design, worst results, most accepted)
- Modeling
 - Pspice (Linear Tech)
 - Boxsim (V) (passive and active modeling)

Boxsim by VISATON

Calculation successful.

Edit driver 1, enclosure	and baffle		_	×
Driver data	& Impedance Baffle a	and position i more o	lata	
Driver data				
Denomination D	ayton Ref 7 Inch	Load driv	er from file	
Comment D.	ata Sheet Parameters, I	Not measured		
Resonance frequency	fs [Hz] 82,1	Linear excursi	on per side (mm)	6
Electrical Q-faktor Qes	1,166	DC resistance	Rdc [ohm]	6,348
Mechanical Q-factor Q	ms 2,045	Inductance of	voice coil Le [mH]	0,74
equivalent volume Vas	[liter] 4,8	substitution re	sistor Re2 [ohm]	7,45281
Effective piston area [c	:m2] 124,7	substitution in	ductance Le2 [mH]	0,18591
P max [W]	60	substitution re	sistor Re3 [ohm]	1,88297
Nominal impedance [of	hm] 8	substitution in	ductance Le3 [mH]	0,32733
🔽 Internal enclosure	(e.g. dome tweeters)	Calculate Re	and Le From imped	lance response
Use frequency res	ponse 🗖 use	acoustic phase resp	1	
🔲 starting around :	2×fc			
Measurement of freque	ency response took pla	ce:		
1. Infinite baffle		•		
f [Hz] A [dB]	▲ f[Hz]	Phase [*] 🔺	Import M	lodifu level
20,199 61,98	20,199	127,8		
20,5375 63,19	20,537	5 127,2	position of point of s	ound origin (SEO)
20,8817 64,34	20,881	7 126,7	to which phase resp	onse corresponds
21,2317 65,38	21,231	7 126,1	35 mm (>	U = behind battlej
21,5875 66,24	× [21,587	5 125,5 💌		
📃 🔲 use impedance res	sponse. 🔲 use	electric phase respo	ns	
Measured impedance i	is only considered at fre	quencies above 3 *	fc,	
except for enclosure ty	pe "integrated enclosu	re"	1	
[[Hz] [Imp. [ohm	1 A	Phase [*]	Import	
1,023 6,331	1,029	3,082		
1,003 0,001	1,009	3,082		
1,122 6,331	1 122	3.082		
1,155 6,331	 ▼ 1,155 	3,082 -		
Ok	Abort			

ance Barrie and position more data	
	Calculated data
eters) C Vented enclosure C Bandpass bivented	Cms = 356,073 µF Lms = 10,554 mH Rms = 11,1335 ohm Lab = 1,E105 mH Rab = 1,E99 ohm Cbr = 1,E-99 µF Rbr = 1,E99 ohm Labf= 1,E105 mH Rabf= 1,E99 ohm Cbrf= 1,E-99 µF Rbrf= 1,E99 ohm Vab = 4,8 liter Vabf = 0 liter
loosely filled = 67 g/l stuffed = 25 g/l	Qts = 0,7426 fsbg = 82,1 Hz Qesbg = 1,166 Qmsbg = 2,045 Qtsbg = 0,7426 Qec = 1,166 Qmc = 2,045 Qtc = 0,7426 fc = 82,1 Hz
$\frac{R_{e}}{L_{e}} + \frac{R_{e2}}{L_{e3}} + \frac{R_{e3}}{L_{e3}} + R_{e$	BI = 6,8863 N/A Mmd = 16,8854 gram Cmd = 0,22256 mm/N Rmd = 0 Ns/m SPL = 86,421 dB/2,83V
ų	update
	eters) C Vented enclosure C Bandpass bivented $loosely filled = 6.7 \text{ g/l}$ $loosely filled = 25 \text{ g/l}$ $Re \int Le \int Re2 \int Re3 f^{\circ}$ $Le \int Le \int Le \int Re3 f^{\circ}$ $Le \int Le \int Re3 f^{\circ}$

Boxsim - option common outer housing

If drivers are placed in the common outer housing, the baffle geometry and the positions of the drivers can be entered here more easily than in the driver dialogs.

	Dayton Ref 7 Inch(1)	Cougar (2)	Cougar (3)	Cougar (4)
. >	common outer housing	common outer housing	common outer housing	common outer housing
	Beam direction	Beam direction	Beam direction	Beam direction
	to listener 🔹	to listener 💌	to listener 🔻	to listener 🔻
	a 87 cm	a 104 cm	, 101 cm	a 98 cm
Set 1				
	c 15 cm	c lio cm	c lio cm	c lio cm
h c				
a				
Dimensions a and c are counted from the left lower corner of the	Cougar (5)			
baffle on which the driver is mounted.	common outer housing	common outer housing		
	Beam direction	Beam direction		
h 108 cm b 46 cm	to listener 🔻	to listener 💌		
t 15 cm	a 95 m	a 23 cm		
Chamfers at front baffle		a [23] on		
chamfer left 7 cm chamfer right 7 cm	c [11,5 cm	c <u> </u> 23 cm		
shawfar han 1 an shawfar hawan 0 an		Beam direction of sound from backside of diaphragm		
		(vent)		
		opposite side as driver 💌		
		a 8 cm		
Ok Abort		c 8 cm		
		,		

х

select part fr	om list
type of part	
C no connection	l.
C wire	
resistor	
C capacitor	
inductance	
C driver	
C amp output	
alue 8	ohm
omm. V optimize part	
Ok	Abor

Sealed / vented enclosure Po	ort Standard crossove	er networks Voltage divider Impedance o	orrection	
Input				
DC resistance Rdc (ohm)	6.8	Electrical Q-faktor Qes	0.4	
Resonance frequency (in encl.	lf so) [Hz] 66	Mechanical Q-factor Qms	2.8	
Voice coil inductance [mH]	0.8		A	
Impedance correction for voice	coil inductance			
	R = 6,8 ohm C = 17,3 μF			
Impedance correction for basic	resonance R = 7,771 ohm L = 6,559 mH C = 886,6 µF			
Impedance correction for basic	resonance and voice co R1 = 6,8 ohm R2 = 0,971 ohm	il inductance		
$ \begin{array}{c} $	L = 6,559 mH C1 = 17,3 μF C2 = 886,6 μF			

Calculation successful.

Calculation successful.

Calculation successful.

10000

20000

Frequency response. Phase response Max. SPL Frequency response directions Polar plots Directivity Driver 1..4 Driver 5..8 Frequency response electr..

200

---- 30°

Frequency response whole speaker

50

directions to listener and different angles to top

100

500

1000

2000

--- 60°

----- 150°

5000

Calculation successful.

50

40

— front

— back

--- 90°

20

Calculation successful.

х

Hey, those look a lot like ...

Software Tools:

- ARTALABS, Ivo Mateljan: Arta, Steps (Measurement Software)
- WT3 (woofer tester 3)
- Jeff Bagby: Baffle Edge Diffraction Simulator 1.20 (Baffle size / location)
- VISATRON: Boxsim V1.20 (Crossover design)
- WinISD pro Alpha (woofer box simulation)
- Bill "Collo" Collison: Boxnotes (midrange, woofer box resonance calculation)
- Leonard Audio: Transmission Line [Beta] (tweeter tubes sim)
- by Tom Irvine Matlab_{TM} scripts FEM rectangular plates

Speaker Bill Of Material

Drivers:

ScanSpeak Discovery 30W/4558T 12" Subwoofer 4 Ohm (Madisound) Dayton Audio RS180-8 (295-355 Parts Express) AuraSound Cougar NSW1-205-8A 1" Extended Range Driver 8 Ohm (296-250 Parts Express)

Cabinets: 4.7 cu,in / tweeter, 2 liter mid range, 70 liter woofer: BOM: 2 x sheets 4x8' 3/4" Birch plywood, 1 x 25 lb Barbell, 4 x 6" x 1" ID Steel Pipe, 4 x Rubber stoppers, Acoustic foam rubber, Hot glue, poster putty. 2' section of 6" ID plastic drain pipe, two half pipes per side (Home Depot), 3" Flared Port tube kit (268-350 PE) Cut to approximately 11".

Crossover: 150 Hz, 700 Hz Mid to Tweet is 4th order, Woofer to Mid is second order.

Attempted to tune box to 24 Hz with 11" long 3" diameter port. Added Foam for damping.

References

http://www.leedh-

acoustic.com/Documents/Presse/Stereo%20&%20Image/Stereo-Image-42-Fevrier-2010.pdf (worlds best drivers)

- <a>www.linkwitzlab.com (speaker testing)
- Current-Driving Of Loudspeakers (how speakers actually work)
- AES Convention Paper 5908: A Virtual Loudspeaker Model to Enable Real-Time Listening Tests in Examining the Audibility of High-Order Crossover Networks. Cochenour & Rich
- Sound Reproduction, Floyd E. Toole
- Acoustics, Jean-Louis Migeot

References

- The Audio Critic, <u>www.theaudiocritic.com</u> Peter Aczel
- <u>www.diyaudio.com</u>
- <a>www.douglas-self.com Douglas Self (amplifier design)
- On Youtube.com (Scientific method applied to audio)
 - Audio Myths Workshop (excellent demo of distortion audibility)
 - AES Damn Lies Workshop
 - Retrospective of the SMWTMS Audio Club (ABX testing)
 - Earl Geddes on Software Assisted Audio System Design (Dispersion)